論文の概要: Enabling AutoML for Zero-Touch Network Security: Use-Case Driven Analysis
- arxiv url: http://arxiv.org/abs/2502.21286v1
- Date: Fri, 28 Feb 2025 18:06:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-03 13:42:16.603322
- Title: Enabling AutoML for Zero-Touch Network Security: Use-Case Driven Analysis
- Title(参考訳): ゼロタッチネットワークセキュリティのためのAutoMLの実現 - ユースケース駆動分析
- Authors: Li Yang, Mirna El Rajab, Abdallah Shami, Sami Muhaidat,
- Abstract要約: Zero-Touch Networks (ZTN) は、完全自動化されたインテリジェントネットワーク管理への最先端のパラダイムシフトである。
ZTNは人工知能(AI)と機械学習(ML)を活用して、運用効率を高め、インテリジェントな意思決定をサポートし、効果的なリソース割り当てを保証する。
ZTNの実装は、その潜在能力を最大限に発揮するために解決する必要があるセキュリティ上の課題に直面する。
- 参考スコア(独自算出の注目度): 20.030842817472347
- License:
- Abstract: Zero-Touch Networks (ZTNs) represent a state-of-the-art paradigm shift towards fully automated and intelligent network management, enabling the automation and intelligence required to manage the complexity, scale, and dynamic nature of next-generation (6G) networks. ZTNs leverage Artificial Intelligence (AI) and Machine Learning (ML) to enhance operational efficiency, support intelligent decision-making, and ensure effective resource allocation. However, the implementation of ZTNs is subject to security challenges that need to be resolved to achieve their full potential. In particular, two critical challenges arise: the need for human expertise in developing AI/ML-based security mechanisms, and the threat of adversarial attacks targeting AI/ML models. In this survey paper, we provide a comprehensive review of current security issues in ZTNs, emphasizing the need for advanced AI/ML-based security mechanisms that require minimal human intervention and protect AI/ML models themselves. Furthermore, we explore the potential of Automated ML (AutoML) technologies in developing robust security solutions for ZTNs. Through case studies, we illustrate practical approaches to securing ZTNs against both conventional and AI/ML-specific threats, including the development of autonomous intrusion detection systems and strategies to combat Adversarial ML (AML) attacks. The paper concludes with a discussion of the future research directions for the development of ZTN security approaches.
- Abstract(参考訳): Zero-Touch Networks(ZTN)は、完全に自動化されインテリジェントなネットワーク管理への最先端のパラダイムシフトであり、次世代(6G)ネットワークの複雑さ、スケール、動的性質を管理するために必要な自動化とインテリジェンスを可能にする。
ZTNは人工知能(AI)と機械学習(ML)を活用して、運用効率を高め、インテリジェントな意思決定をサポートし、効果的なリソース割り当てを保証する。
しかし、ZTNの実装は、その潜在能力を最大限に発揮するために解決する必要があるセキュリティ上の課題に直面している。
特に、AI/MLベースのセキュリティメカニズムの開発における人間の専門知識の必要性と、AI/MLモデルをターゲットにした敵攻撃の脅威の2つが重要な課題である。
本稿では、人間の介入を最小限に抑え、AI/MLモデル自体を保護する高度なAI/MLベースのセキュリティメカニズムの必要性を強調する。
さらに、ZTNの堅牢なセキュリティソリューションを開発する上で、Automated ML(AutoML)技術の可能性についても検討する。
ケーススタディを通じて、自律侵入検知システムの開発や、敵ML(AML)攻撃と戦う戦略を含む、従来およびAI/ML固有の脅威に対してZTNを保護するための実践的なアプローチを解説する。
本稿は,ZTNのセキュリティ・アプローチ開発に向けた今後の研究の方向性について論じる。
関連論文リスト
- Machine Learning-Based Intrusion Detection and Prevention System for IIoT Smart Metering Networks: Challenges and Solutions [0.0]
本稿では、IIoTベースのスマート計測ネットワークの安全性に関する課題について考察する。
エッジデバイスを保護するための機械学習ベースの侵入検知システム(IDPS)を提案する。
論文 参考訳(メタデータ) (2025-02-16T14:08:59Z) - Global Challenge for Safe and Secure LLMs Track 1 [57.08717321907755]
LLM(Global Challenge for Safe and Secure Large Language Models)は、AI Singapore(AISG)とCyberSG R&D Programme Office(CRPO)が主催する先駆的イニシアチブである。
本稿では,AI Singapore(AISG)とCyberSG R&D Programme Office(CRPO)が組織した先駆的イニシアチブであるLLM(Global Challenge for Safe and Secure Large Language Models)を紹介する。
論文 参考訳(メタデータ) (2024-11-21T08:20:31Z) - Exploring the Adversarial Vulnerabilities of Vision-Language-Action Models in Robotics [70.93622520400385]
本稿では,VLAに基づくロボットシステムのロバスト性を体系的に評価する。
本研究では,ロボット行動の不安定化に空間的基盤を活用する,標的のない位置認識型攻撃目標を提案する。
また、カメラの視野内に小さなカラフルなパッチを配置し、デジタル環境と物理環境の両方で効果的に攻撃を実行する逆パッチ生成アプローチを設計する。
論文 参考訳(メタデータ) (2024-11-18T01:52:20Z) - Attack Atlas: A Practitioner's Perspective on Challenges and Pitfalls in Red Teaming GenAI [52.138044013005]
生成AI、特に大規模言語モデル(LLM)は、製品アプリケーションにますます統合される。
新たな攻撃面と脆弱性が出現し、自然言語やマルチモーダルシステムにおける敵の脅威に焦点を当てる。
レッドチーム(英語版)はこれらのシステムの弱点を積極的に識別する上で重要となり、ブルーチーム(英語版)はそのような敵の攻撃から保護する。
この研究は、生成AIシステムの保護のための学術的な洞察と実践的なセキュリティ対策のギャップを埋めることを目的としている。
論文 参考訳(メタデータ) (2024-09-23T10:18:10Z) - An Adaptive End-to-End IoT Security Framework Using Explainable AI and LLMs [1.9662978733004601]
本稿では,機械学習(ML),説明可能なAI(XAI),大規模言語モデル(LLM)を活用した,リアルタイムIoT攻撃検出および応答のための革新的なフレームワークを提案する。
私たちのエンドツーエンドフレームワークは、モデル開発からデプロイメントへのシームレスな移行を促進するだけでなく、既存の研究でしばしば欠落している現実世界のアプリケーション機能も表しています。
論文 参考訳(メタデータ) (2024-09-20T03:09:23Z) - Automated Cybersecurity Compliance and Threat Response Using AI, Blockchain & Smart Contracts [0.36832029288386137]
人工知能(AI)、ブロックチェーン、スマートコントラクトを統合する新しいフレームワークを提案する。
本稿では,セキュリティポリシの実施を自動化し,手作業や潜在的なヒューマンエラーを減らすシステムを提案する。
論文 参考訳(メタデータ) (2024-09-12T20:38:14Z) - EARBench: Towards Evaluating Physical Risk Awareness for Task Planning of Foundation Model-based Embodied AI Agents [53.717918131568936]
EAI(Embodied AI)は、高度なAIモデルを現実世界のインタラクションのための物理的なエンティティに統合する。
高レベルのタスク計画のためのEAIエージェントの"脳"としてのファンデーションモデルは、有望な結果を示している。
しかし、これらのエージェントの物理的環境への展開は、重大な安全性上の課題を呈している。
本研究では,EAIシナリオにおける身体的リスクの自動評価のための新しいフレームワークEARBenchを紹介する。
論文 参考訳(メタデータ) (2024-08-08T13:19:37Z) - Vulnerability of Machine Learning Approaches Applied in IoT-based Smart Grid: A Review [51.31851488650698]
機械学習(ML)は、IoT(Internet-of-Things)ベースのスマートグリッドでの使用頻度が高まっている。
電力信号に注入された逆方向の歪みは システムの正常な制御と操作に大きな影響を及ぼす
安全クリティカルパワーシステムに適用されたMLsgAPPの脆弱性評価を行うことが不可欠である。
論文 参考訳(メタデータ) (2023-08-30T03:29:26Z) - AI Maintenance: A Robustness Perspective [91.28724422822003]
我々は、AIライフサイクルにおけるロバストネスの課題を強調し、自動車のメンテナンスに類似させることで、AIのメンテナンスを動機付ける。
本稿では,ロバストネスリスクの検出と軽減を目的としたAIモデル検査フレームワークを提案する。
我々のAIメンテナンスの提案は、AIライフサイクル全体を通して堅牢性評価、状態追跡、リスクスキャン、モデル硬化、規制を促進する。
論文 参考訳(メタデータ) (2023-01-08T15:02:38Z) - Adversarial Machine Learning Threat Analysis in Open Radio Access
Networks [37.23982660941893]
Open Radio Access Network (O-RAN) は、新しい、オープンで適応的でインテリジェントなRANアーキテクチャである。
本稿では,O-RANに対する体系的対向機械学習脅威分析を提案する。
論文 参考訳(メタデータ) (2022-01-16T17:01:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。