AutoComb: Automated Comb Sign Detector for 3D CTE Scans
- URL: http://arxiv.org/abs/2502.21311v1
- Date: Fri, 28 Feb 2025 18:53:32 GMT
- Title: AutoComb: Automated Comb Sign Detector for 3D CTE Scans
- Authors: Shashwat Gupta, Sarthak Gupta, Akshan Agrawal, Mahim Naaz, Rajanikanth Yadav, Priyanka Bagade,
- Abstract summary: Comb Sign is an important biomarker to detect multiple gastrointestinal diseases.<n>Current detection methods are manual, time-intensive, and prone to subjective interpretation.<n>We propose a fully automated technique for the detection of Comb Sign from CTE.
- Score: 6.146230417980112
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Comb Sign is an important imaging biomarker to detect multiple gastrointestinal diseases. It shows up as increased blood flow along the intestinal wall indicating potential abnormality, which helps doctors diagnose inflammatory conditions. Despite its clinical significance, current detection methods are manual, time-intensive, and prone to subjective interpretation due to the need for multi-planar image-orientation. To the best of our knowledge, we are the first to propose a fully automated technique for the detection of Comb Sign from CTE scans. Our novel approach is based on developing a probabilistic map that shows areas of pathological hypervascularity by identifying fine vascular bifurcations and wall enhancement via processing through stepwise algorithmic modules. These modules include utilising deep learning segmentation model, a Gaussian Mixture Model (GMM), vessel extraction using vesselness filter, iterative probabilistic enhancement of vesselness via neighborhood maximization and a distance-based weighting scheme over the vessels. Experimental results demonstrate that our pipeline effectively identifies Comb Sign, offering an objective, accurate, and reliable tool to enhance diagnostic accuracy in Crohn's disease and related hypervascular conditions where Comb Sign is considered as one of the important biomarkers.
Related papers
- Enhancing Angular Resolution via Directionality Encoding and Geometric Constraints in Brain Diffusion Tensor Imaging [70.66500060987312]
Diffusion-weighted imaging (DWI) is a type of Magnetic Resonance Imaging (MRI) technique sensitised to the diffusivity of water molecules.
This work proposes DirGeo-DTI, a deep learning-based method to estimate reliable DTI metrics even from a set of DWIs acquired with the minimum theoretical number (6) of gradient directions.
arXiv Detail & Related papers (2024-09-11T11:12:26Z) - Beyond the Eye: A Relational Model for Early Dementia Detection Using Retinal OCTA Images [42.75763279888966]
We present a novel PolarNet+ that uses retinal optical coherence tomography angiography ( OCTA) to discriminate early-onset Alzheimer's disease (AD) and mild cognitive impairment (MCI) subjects from controls.
Our method first maps OCTA images from Cartesian coordinates to polar coordinates, allowing approximate sub-region calculation.
We then introduce a multi-view module to serialize and analyze the images along three dimensions for comprehensive, clinically useful information extraction.
arXiv Detail & Related papers (2024-08-09T15:10:34Z) - Dr-SAM: An End-to-End Framework for Vascular Segmentation, Diameter Estimation, and Anomaly Detection on Angiography Images [2.9265754968401723]
Dr-SAM is a framework for vessel segmentation, diameter estimation, and anomaly analysis.
We introduce a new benchmark dataset for the comprehensive analysis of peripheral vessel angiography images.
arXiv Detail & Related papers (2024-04-25T20:43:32Z) - Spatiotemporal Disentanglement of Arteriovenous Malformations in Digital
Subtraction Angiography [37.44819725897024]
The presented method aims to enhance Digital Subtraction Angiography (DSA) image series by highlighting critical information via automatic classification of vessels.
The method was tested on clinical DSA images series and demonstrated efficient differentiation between arteries and veins.
arXiv Detail & Related papers (2024-02-15T00:29:53Z) - Intelligent Breast Cancer Diagnosis with Heuristic-assisted
Trans-Res-U-Net and Multiscale DenseNet using Mammogram Images [0.0]
Breast cancer (BC) significantly contributes to cancer-related mortality in women.
accurately distinguishing malignant mass lesions remains challenging.
We propose a novel deep learning approach for BC screening utilizing mammography images.
arXiv Detail & Related papers (2023-10-30T10:22:14Z) - Fuzzy Attention Neural Network to Tackle Discontinuity in Airway
Segmentation [67.19443246236048]
Airway segmentation is crucial for the examination, diagnosis, and prognosis of lung diseases.
Some small-sized airway branches (e.g., bronchus and terminaloles) significantly aggravate the difficulty of automatic segmentation.
This paper presents an efficient method for airway segmentation, comprising a novel fuzzy attention neural network and a comprehensive loss function.
arXiv Detail & Related papers (2022-09-05T16:38:13Z) - Improving the diagnosis of breast cancer based on biophysical ultrasound
features utilizing machine learning [0.0]
We propose a biophysical feature based machine learning method for breast cancer detection.
The overall accuracy for the most common types and sizes of breast lesions in our study exceeded 98.0% for classification and 0.98 for an area under the receiver operating characteristic curve.
arXiv Detail & Related papers (2022-07-13T23:53:09Z) - An Algorithm for the Labeling and Interactive Visualization of the
Cerebrovascular System of Ischemic Strokes [59.116811751334225]
VirtualDSA++ is an algorithm designed to segment and label the cerebrovascular tree on CTA scans.
We extend the labeling mechanism for the cerebral arteries to identify occluded vessels.
We present the generic concept of iterative systematic search for pathways on all nodes of said model, which enables new interactive features.
arXiv Detail & Related papers (2022-04-26T14:20:26Z) - Lymphocyte Classification in Hyperspectral Images of Ovarian Cancer
Tissue Biopsy Samples [94.37521840642141]
We present a machine learning pipeline to segment white blood cell pixels in hyperspectral images of biopsy cores.
These cells are clinically important for diagnosis, but some prior work has struggled to incorporate them due to difficulty obtaining precise pixel labels.
arXiv Detail & Related papers (2022-03-23T00:58:27Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
We propose a graph-based sparse principal component analysis (GS-PCA) network, for automated detection of cancerous lesions on histological lung slides stained by hematoxylin and eosin (H&E)
We evaluate the performance of the proposed algorithm on H&E slides obtained from an SVM K-rasG12D lung cancer mouse model using precision/recall rates, F-score, Tanimoto coefficient, and area under the curve (AUC) of the receiver operator characteristic (ROC)
arXiv Detail & Related papers (2021-10-27T19:28:36Z) - A Deep Learning Approach to Predicting Collateral Flow in Stroke
Patients Using Radiomic Features from Perfusion Images [58.17507437526425]
Collateral circulation results from specialized anastomotic channels which provide oxygenated blood to regions with compromised blood flow.
The actual grading is mostly done through manual inspection of the acquired images.
We present a deep learning approach to predicting collateral flow grading in stroke patients based on radiomic features extracted from MR perfusion data.
arXiv Detail & Related papers (2021-10-24T18:58:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.