Dr-SAM: An End-to-End Framework for Vascular Segmentation, Diameter Estimation, and Anomaly Detection on Angiography Images
- URL: http://arxiv.org/abs/2404.17029v1
- Date: Thu, 25 Apr 2024 20:43:32 GMT
- Title: Dr-SAM: An End-to-End Framework for Vascular Segmentation, Diameter Estimation, and Anomaly Detection on Angiography Images
- Authors: Vazgen Zohranyan, Vagner Navasardyan, Hayk Navasardyan, Jan Borggrefe, Shant Navasardyan,
- Abstract summary: Dr-SAM is a framework for vessel segmentation, diameter estimation, and anomaly analysis.
We introduce a new benchmark dataset for the comprehensive analysis of peripheral vessel angiography images.
- Score: 2.9265754968401723
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advancements in AI have significantly transformed medical imaging, particularly in angiography, by enhancing diagnostic precision and patient care. However existing works are limited in analyzing the aorta and iliac arteries, above all for vascular anomaly detection and characterization. To close this gap, we propose Dr-SAM, a comprehensive multi-stage framework for vessel segmentation, diameter estimation, and anomaly analysis aiming to examine the peripheral vessels through angiography images. For segmentation we introduce a customized positive/negative point selection mechanism applied on top of the Segment Anything Model (SAM), specifically for medical (Angiography) images. Then we propose a morphological approach to determine the vessel diameters followed by our histogram-driven anomaly detection approach. Moreover, we introduce a new benchmark dataset for the comprehensive analysis of peripheral vessel angiography images which we hope can boost the upcoming research in this direction leading to enhanced diagnostic precision and ultimately better health outcomes for individuals facing vascular issues.
Related papers
- Spatiotemporal Disentanglement of Arteriovenous Malformations in Digital
Subtraction Angiography [37.44819725897024]
The presented method aims to enhance Digital Subtraction Angiography (DSA) image series by highlighting critical information via automatic classification of vessels.
The method was tested on clinical DSA images series and demonstrated efficient differentiation between arteries and veins.
arXiv Detail & Related papers (2024-02-15T00:29:53Z) - Beyond Images: An Integrative Multi-modal Approach to Chest X-Ray Report
Generation [47.250147322130545]
Image-to-text radiology report generation aims to automatically produce radiology reports that describe the findings in medical images.
Most existing methods focus solely on the image data, disregarding the other patient information accessible to radiologists.
We present a novel multi-modal deep neural network framework for generating chest X-rays reports by integrating structured patient data, such as vital signs and symptoms, alongside unstructured clinical notes.
arXiv Detail & Related papers (2023-11-18T14:37:53Z) - SSASS: Semi-Supervised Approach for Stenosis Segmentation [9.767759441883008]
The complexity of coronary artery structures combined with the inherent noise in X-ray images poses a considerable challenge to this task.
We introduce a semi-supervised approach for cardiovascular stenosis segmentation.
Our approach demonstrated an exceptional performance in the Automatic Region-based Coronary Artery Disease diagnostics.
arXiv Detail & Related papers (2023-11-17T02:01:19Z) - Human Treelike Tubular Structure Segmentation: A Comprehensive Review
and Future Perspectives [8.103169967374944]
structures in human physiology follow a treelike morphology, which often expresses complexity at very fine scales.
Large collections of 2D and 3D images have been made available by medical imaging modalities.
Analysis of structure provides insights into disease diagnosis, treatment planning, and prognosis.
arXiv Detail & Related papers (2022-07-12T17:01:42Z) - SQUID: Deep Feature In-Painting for Unsupervised Anomaly Detection [76.01333073259677]
We propose the use of Space-aware Memory Queues for In-painting and Detecting anomalies from radiography images (abbreviated as SQUID)
We show that SQUID can taxonomize the ingrained anatomical structures into recurrent patterns; and in the inference, it can identify anomalies (unseen/modified patterns) in the image.
arXiv Detail & Related papers (2021-11-26T13:47:34Z) - Act Like a Radiologist: Towards Reliable Multi-view Correspondence
Reasoning for Mammogram Mass Detection [49.14070210387509]
We propose an Anatomy-aware Graph convolutional Network (AGN) for mammogram mass detection.
AGN is tailored for mammogram mass detection and endows existing detection methods with multi-view reasoning ability.
Experiments on two standard benchmarks reveal that AGN significantly exceeds the state-of-the-art performance.
arXiv Detail & Related papers (2021-05-21T06:48:34Z) - Segmentation of Anatomical Layers and Artifacts in Intravascular
Polarization Sensitive Optical Coherence Tomography Using Attending Physician
and Boundary Cardinality Lost Terms [4.93836246080317]
Intravascular ultrasound and optical coherence tomography are widely available for characterizing coronary stenoses.
We propose a convolutional neural network model and optimize its performance using a new multi-term loss function.
Our model segments two classes of major artifacts and detects the anatomical layers within the thickened vessel wall regions.
arXiv Detail & Related papers (2021-05-11T15:52:31Z) - An Interpretable Multiple-Instance Approach for the Detection of
referable Diabetic Retinopathy from Fundus Images [72.94446225783697]
We propose a machine learning system for the detection of referable Diabetic Retinopathy in fundus images.
By extracting local information from image patches and combining it efficiently through an attention mechanism, our system is able to achieve high classification accuracy.
We evaluate our approach on publicly available retinal image datasets, in which it exhibits near state-of-the-art performance.
arXiv Detail & Related papers (2021-03-02T13:14:15Z) - Automated Deep Learning Analysis of Angiography Video Sequences for
Coronary Artery Disease [4.233200689119682]
The evaluation of obstructions (stenosis) in coronary arteries is currently done by a physician's visual assessment of coronary angiography video sequences.
We report an automated analysis pipeline based on deep learning to rapidly and objectively assess coronary angiograms.
We combined powerful deep learning approaches such as ResNet and U-Net with traditional image processing and geometrical analysis.
arXiv Detail & Related papers (2021-01-29T10:23:49Z) - Spectral-Spatial Recurrent-Convolutional Networks for In-Vivo
Hyperspectral Tumor Type Classification [49.32653090178743]
We demonstrate the feasibility of in-vivo tumor type classification using hyperspectral imaging and deep learning.
Our best model achieves an AUC of 76.3%, significantly outperforming previous conventional and deep learning methods.
arXiv Detail & Related papers (2020-07-02T12:00:53Z) - Weakly supervised multiple instance learning histopathological tumor
segmentation [51.085268272912415]
We propose a weakly supervised framework for whole slide imaging segmentation.
We exploit a multiple instance learning scheme for training models.
The proposed framework has been evaluated on multi-locations and multi-centric public data from The Cancer Genome Atlas and the PatchCamelyon dataset.
arXiv Detail & Related papers (2020-04-10T13:12:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.