論文の概要: TomoSelfDEQ: Self-Supervised Deep Equilibrium Learning for Sparse-Angle CT Reconstruction
- arxiv url: http://arxiv.org/abs/2502.21320v1
- Date: Fri, 28 Feb 2025 18:59:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-03 13:40:45.018633
- Title: TomoSelfDEQ: Self-Supervised Deep Equilibrium Learning for Sparse-Angle CT Reconstruction
- Title(参考訳): TomoSelfDEQ: Sparse-Angle CT 再構成のための自己監督型深部平衡学習
- Authors: Tatiana A. Bubba, Matteo Santacesaria, Andrea Sebastiani,
- Abstract要約: TomoSelfDEQはスパース角度CT再構成のための自己教師型フレームワークである。
アンダーサンプル測定で直接訓練する。
最先端の結果を16個の射影角度で達成する。
- 参考スコア(独自算出の注目度): 0.6554326244334868
- License:
- Abstract: Deep learning has emerged as a powerful tool for solving inverse problems in imaging, including computed tomography (CT). However, most approaches require paired training data with ground truth images, which can be difficult to obtain, e.g., in medical applications. We present TomoSelfDEQ, a self-supervised Deep Equilibrium (DEQ) framework for sparse-angle CT reconstruction that trains directly on undersampled measurements. We establish theoretical guarantees showing that, under suitable assumptions, our self-supervised updates match those of fully-supervised training with a loss including the (possibly non-unitary) forward operator like the CT forward map. Numerical experiments on sparse-angle CT data confirm this finding, also demonstrating that TomoSelfDEQ outperforms existing self-supervised methods, achieving state-of-the-art results with as few as 16 projection angles.
- Abstract(参考訳): ディープラーニングは、CT(Computerd tomography)を含む画像の逆問題を解決する強力なツールとして登場した。
しかし、ほとんどのアプローチでは、医学的応用では入手が難しい地上の真理画像とペアのトレーニングデータを必要とする。
本報告では,Sparse-angle CT 再構成のための自己教師型Deep Equilibrium (DEQ) フレームワークである TomoSelfDEQ について述べる。
我々は、適切な仮定の下で、我々の自己監督的更新が、フル教師付きトレーニングと、CTフォワードマップのような(おそらくは単体でない)フォワードオペレータを含む損失とに一致していることを示す理論的保証を確立する。
スパース角度CTデータに関する数値実験により、この発見が確認され、ThiSelfDEQが既存の自己監督手法より優れており、最先端の結果を最大16個の投影角度で達成していることが示された。
関連論文リスト
- CoCPF: Coordinate-based Continuous Projection Field for Ill-Posed Inverse Problem in Imaging [78.734927709231]
スパース・ビュー・コンピュート・トモグラフィー(SVCT)の再構成は,スパース・サンプリングによるCT画像の取得を目的としている。
暗黙的な神経表現(INR)技術は、不備のため、その分野に「かなりの穴」(すなわち、未モデル化空間)を残し、準最適結果をもたらす可能性がある。
SVCT再構成のためのホールフリー表現場を構築することを目的としたコーディネート型連続射影場(CoCPF)を提案する。
論文 参考訳(メタデータ) (2024-06-21T08:38:30Z) - Rotational Augmented Noise2Inverse for Low-dose Computed Tomography
Reconstruction [83.73429628413773]
改良された深層学習手法は、画像のノイズを除去する能力を示しているが、正確な地上の真実を必要とする。
畳み込みニューラルネットワーク(CNN)のトレーニングに基礎的真理を必要としないLDCTのための新しい自己教師型フレームワークを提案する。
数値および実験結果から,Sparse View を用いた N2I の再構成精度は低下しており,提案手法は異なる範囲のサンプリング角度で画像品質を向上する。
論文 参考訳(メタデータ) (2023-12-19T22:40:51Z) - Towards Head Computed Tomography Image Reconstruction Standardization
with Deep Learning Assisted Automatic Detection [5.288684776927016]
頭部CT像の3次元再構成は組織構造の複雑な空間的関係を解明する。
偏差のない最適な頭部CTスキャンを確保することは、技術者による低い位置決め、患者の身体的制約、CTスキャナの傾斜角度制限など、臨床環境では困難である。
そこで本研究では,手動による介入を低減し,精度と再現性を向上し,効率的な頭部CT画像の3D再構成法を提案する。
論文 参考訳(メタデータ) (2023-07-31T06:58:49Z) - APRF: Anti-Aliasing Projection Representation Field for Inverse Problem
in Imaging [74.9262846410559]
Sparse-view Computed Tomography (SVCT) は画像の逆問題である。
近年の研究では、インプリシット・ニューラル・リ表現(INR)を用いて、シングラムとCT画像の座標に基づくマッピングを構築している。
自己教師型SVCT再構成法の提案 -抗エイリアス射影表現場(APRF)-
APRFは空間的制約によって隣接する投影ビュー間の連続的な表現を構築することができる。
論文 参考訳(メタデータ) (2023-07-11T14:04:12Z) - Generative Modeling in Sinogram Domain for Sparse-view CT Reconstruction [12.932897771104825]
CT検査では投射回数を直感的に減らすことで放射線線量を大幅に減少させることができる。
疎視データを用いた従来のディープラーニング技術では、教師付き方法でネットワークをトレーニングするためにスパースビュー/フルビューCTイメージペアが必要である。
スパース・ビューCT再構成のための非教師なしスコアベース生成モデルについて検討した。
論文 参考訳(メタデータ) (2022-11-25T06:49:18Z) - Attentive Symmetric Autoencoder for Brain MRI Segmentation [56.02577247523737]
視覚変換器(ViT)をベースとした3次元脳MRIセグメンテーションタスクのための新しいアテンテーティブシンメトリオートエンコーダを提案する。
事前学習の段階では、提案するオートエンコーダがより注意を払って、勾配測定値に従って情報パッチを再構築する。
実験の結果,提案手法は最先端の自己教師付き学習法や医用画像分割モデルよりも優れていた。
論文 参考訳(メタデータ) (2022-09-19T09:43:19Z) - Patch-wise Deep Metric Learning for Unsupervised Low-Dose CT Denoising [33.706959549595496]
パッチワイド・ディープ・メトリック・ラーニングを用いた低用量CT再構成のための新しい教師なし学習手法を提案する。
鍵となる考え方は、同じ解剖学的構造を共有するイメージパッチの正のペアを引いて、互いに同じノイズレベルを持つ負のペアをプッシュすることで、埋め込み空間を学習することである。
実験結果から,CT数シフトを伴わない高品質な復号化画像の作成において,深度検定学習が重要な役割を担っていることが確認された。
論文 参考訳(メタデータ) (2022-07-06T00:58:11Z) - Computed Tomography Reconstruction using Generative Energy-Based Priors [13.634603375405744]
我々は、基準CTデータに基づいて、その可能性の最大化により、大域的受容場を持つパラメトリック正則化器を学習する。
正規化器を限られた角度と少数のCT再構成問題に適用し、従来の再構成アルゴリズムよりも大きなマージンで性能を向上する。
論文 参考訳(メタデータ) (2022-03-23T18:26:23Z) - Incremental Cross-view Mutual Distillation for Self-supervised Medical
CT Synthesis [88.39466012709205]
本稿では,スライス間の分解能を高めるために,新しい医療スライスを構築した。
臨床実践において, 根本・中間医療スライスは常に欠落していることを考慮し, 相互蒸留の段階的相互蒸留戦略を導入する。
提案手法は,最先端のアルゴリズムよりも明確なマージンで優れる。
論文 参考訳(メタデータ) (2021-12-20T03:38:37Z) - Self-Supervised Training For Low Dose CT Reconstruction [0.0]
本研究は,低線量シノグラムを自身のトレーニングターゲットとして用いるためのトレーニングスキームを定義する。
ノイズが要素的に独立な射影領域に自己超越原理を適用する。
提案手法は,従来手法と圧縮方式の両方において,反復的再構成法よりも優れていることを示す。
論文 参考訳(メタデータ) (2020-10-25T22:02:14Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
磁気共鳴画像(MRI)の異常検出は教師なし手法で行うことができる。
本研究では,変分オートエンコーダの潜伏空間における相似関数の計算に基づいて,腫瘍検出のためのスライスワイズ半教師法を提案する。
本研究では,高解像度画像上でのモデルをトレーニングし,再現の質を向上させることにより,異なるベースラインに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2020-07-24T14:02:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。