Time-Irreversible Quantum-Classical Dynamics of Molecular Models in the Brain
- URL: http://arxiv.org/abs/2503.00016v1
- Date: Tue, 18 Feb 2025 00:12:12 GMT
- Title: Time-Irreversible Quantum-Classical Dynamics of Molecular Models in the Brain
- Authors: Alessandro Sergi, Antonino Messina, Rosalba Saija, Gabriella Martino, Maria Teresa Caccamo, Min-Fang Kuo, Michael A. Nitsche,
- Abstract summary: This manuscript aims to illustrate a quantum-classical dissipative theory within the long-term project of studying molecular processes in the brain.<n>The theory must be dissipative not because of formal requirements but because brain processes appear to be dissipative at the molecular, physiological, and high functional levels.
- Score: 36.136619420474766
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This manuscript aims to illustrate a quantum-classical dissipative theory (suited to be converted to effective algorithms for numerical simulations) within the long-term project of studying molecular processes in the brain. Other approaches, briefly sketched in the text, have advocated the need to deal with both quantum and classical dynamic variables when studying the brain. At variance with these other frameworks, the manuscript's formalism allows us to explicitly treat the classical dynamical variables. The theory must be dissipative not because of formal requirements but because brain processes appear to be dissipative at the molecular, physiological, and high functional levels. We discuss theoretically that using Brownian dynamics or the Nos\`e-Hoover-Chain thermostat to perform computer simulations provides an effective way to introduce an arrow of time for open quantum systems in a classical environment. In the future, We plan to study classical models of neurons and astrocytes, as well as their networks, coupled to quantum dynamical variables describing, e.g., nuclear and electron spins, HOMO and LUMO orbitals of phenyl and indole rings, ion channels, and tunneling protons.
Related papers
- A Theory of Quantum Jumps [44.99833362998488]
We study fluorescence and the phenomenon of quantum jumps'' in idealized models of atoms coupled to the quantized electromagnetic field.
Our results amount to a derivation of the fundamental randomness in the quantum-mechanical description of microscopic systems.
arXiv Detail & Related papers (2024-04-16T11:00:46Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Modeling Non-Covalent Interatomic Interactions on a Photonic Quantum
Computer [50.24983453990065]
We show that the cQDO model lends itself naturally to simulation on a photonic quantum computer.
We calculate the binding energy curve of diatomic systems by leveraging Xanadu's Strawberry Fields photonics library.
Remarkably, we find that two coupled bosonic QDOs exhibit a stable bond.
arXiv Detail & Related papers (2023-06-14T14:44:12Z) - Quantum formalism for cognitive psychology [0.0]
The dynamics of the state of mind resulting form information acquisition is characterised by the von Neumann-L"uders projection of quantum theory.
The quantum formalism however goes beyond the range of applicability of classical reasoning in explaining cognitive behaviours, thus opens up new and intriguing possibilities.
arXiv Detail & Related papers (2023-03-09T12:41:20Z) - A Quantum-Classical Model of Brain Dynamics [62.997667081978825]
Mixed Weyl symbol is used to describe brain processes at the microscopic level.
Electromagnetic fields and phonon modes involved in the processes are treated either classically or semi-classically.
Zero-point quantum effects can be incorporated into numerical simulations by controlling the temperature of each field mode.
arXiv Detail & Related papers (2023-01-17T15:16:21Z) - Quantum simulation of non-equilibrium dynamics and thermalization in the
Schwinger model [0.0]
We present simulations of non-equilibrium dynamics of quantum field theories on digital quantum computers.
We consider the Schwinger model, a 1+1 dimensional U(1) gauge theory, coupled through a Yukawa-type interaction to a thermal environment.
arXiv Detail & Related papers (2021-06-15T19:48:05Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
We show how to represent linear and non-linear layers as unitary quantum gates, and interpret the fundamental excitations of the quantum model as particles.
On top of opening a new perspective and techniques for studying neural networks, the quantum formulation is well suited for optical quantum computing.
arXiv Detail & Related papers (2021-03-08T17:24:29Z) - Simulating Energy Transfer in Molecular Systems with Digital Quantum
Computers [8.271013526496906]
Quantum computers have the potential to simulate chemical systems beyond the capability of classical computers.
We extend near-term quantum simulations of chemistry to time-dependent processes by simulating energy transfer in organic semiconducting molecules.
Our approach opens up new opportunities for modeling quantum dynamics in chemical, biological and material systems with quantum computers.
arXiv Detail & Related papers (2021-01-18T05:08:05Z) - Objective trajectories in hybrid classical-quantum dynamics [0.0]
We introduce several toy models in which to study hybrid classical-quantum evolution.
We present an unravelling approach to calculate the dynamics, and provide code to numerically simulate it.
arXiv Detail & Related papers (2020-11-11T19:00:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.