論文の概要: KVCrush: Key value cache size-reduction using similarity in head-behaviour
- arxiv url: http://arxiv.org/abs/2503.00022v1
- Date: Mon, 24 Feb 2025 02:57:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-09 03:20:34.084756
- Title: KVCrush: Key value cache size-reduction using similarity in head-behaviour
- Title(参考訳): KVCrush: ヘッドビヘイビアにおける類似性を利用したキー値キャッシュサイズ縮小
- Authors: Gopi Krishna Jha, Sameh Gobriel, Liubov Talamanova, Alexander Kozlov, Nilesh Jain,
- Abstract要約: 大規模言語モデル(LLM)における推論を高速化する重要な最適化手法としてキーバリューキャッシュ(KV)が登場している。
しかしながら、KVのメモリフットプリントは、モデルのバッチサイズに直接影響を与えるモデルデプロイメントにおいて、大きなボトルネックとなります。
我々は,KVCrushと多くのKV圧縮技術を組み合わせることで,より小さなメモリでモデル精度を向上させることを提案する。
- 参考スコア(独自算出の注目度): 40.792661186062396
- License:
- Abstract: Key-value (KV) caching has emerged as a crucial optimization technique for accelerating inference in large language models (LLMs). By allowing the attention operation to scale linearly rather than quadratically with the total sequence length, KV caching significantly enhances generation throughput. However, due to large context lengths in the modern LLMs, the memory footprint of the KV is a huge bottleneck for model deployment directly impacting the model's batch size, hindering its ability to deliver high-throughput. Existing research addresses this challenge using several techniques, such as discarding low-attention tokens, quantization, and matrix approximation which typically lead to a negative impact on the model accuracy. In this paper, We propose KVCrush technology which can be combined with many KV compression technologies to improve the model accuracy at a much smaller memory. KVCrush provides an alternate representation scheme for key-value states, along with a low-overhead token pruning algorithm that accounts for the token distribution in the KV cache, which in turn allows for a a smaller footprint while maintaining the accuracy of the model. Based on our results, KVCrush reduces LongBench KV Cache size by 4x with less than 1% accuracy drop and achieves state-of-the-art average accuracy with minimal overhead, incurring less than 0.5% total inference latency. KVCrush not only outperforms the accuracy of state-of-the-art importance-based token retention schemes but is also compatible with typical practical LLM deployments using KV cache paging schemes such as vLLM and mixed precision quantization.
- Abstract(参考訳): キーバリューキャッシュ(KV)は,大規模言語モデル(LLM)における推論を高速化する重要な最適化手法として登場した。
注意操作を全シーケンス長の2乗ではなく直線的にスケールさせることで、KVキャッシングは生成スループットを大幅に向上させる。
しかし、現代のLLMでは大きなコンテキスト長のため、KVのメモリフットプリントはモデルのバッチサイズに直接影響し、高スループットを実現する能力を妨げている。
既存の研究は、低アテンショントークンの破棄、量子化、行列近似など、モデル精度に負の影響をもたらすいくつかの手法を用いて、この課題に対処している。
本稿では,KVCrush技術と多くのKV圧縮技術を組み合わせて,より小さなメモリでモデル精度を向上させることを提案する。
KVCrushはキー値状態の代替表現スキームと、KVキャッシュ内のトークン分布を考慮し、モデルの精度を維持しながらフットプリントを小さくする低オーバヘッドトークンプルーニングアルゴリズムを提供する。
以上の結果から,KVCrush は 1% 未満の精度で LongBench KV キャッシュサイズを 4 倍に削減し,平均精度を最小限のオーバーヘッドで達成し,総推論遅延は 0.5% 未満である。
KVCrushは、最先端の重要度に基づくトークン保持スキームの精度よりも優れているだけでなく、vLLMや混合精度量子化のようなKVキャッシュページングスキームを用いた典型的なLCMデプロイメントとも互換性がある。
関連論文リスト
- KVTuner: Sensitivity-Aware Layer-wise Mixed Precision KV Cache Quantization for Efficient and Nearly Lossless LLM Inference [40.97781175723418]
KVキャッシュの量子化は、長いコンテキストにおける大規模言語モデル推論のスループットとレイテンシを改善することができる。
現在の方法では、KVキャッシュの量子化に対する階層的感度を見極めること、オンラインのきめ細かい決定のオーバーヘッドが高いこと、異なるLLMや制約に対する柔軟性の低いこと、の3つの未解決問題がある。
粗粒度のKVキャッシュに対して最適なハードウェアフレンドリなKV量子化ペアを適応的に探索する,シンプルで効果的なフレームワークKVTunerを提案する。
論文 参考訳(メタデータ) (2025-02-06T15:26:26Z) - More Tokens, Lower Precision: Towards the Optimal Token-Precision Trade-off in KV Cache Compression [71.42818367729573]
大規模言語モデル(LLM)では、KVキャッシュのメモリ使用量は推論において重大なボトルネックとなっている。
KVプルーニングやKV量子化を含む主流のKV圧縮法は、主にトークンまたは精度寸法を別々に扱う。
本稿では,KVキャッシュ圧縮におけるトークン精度トレードオフを包括的に検討する。
論文 参考訳(メタデータ) (2024-12-17T09:20:31Z) - LoRC: Low-Rank Compression for LLMs KV Cache with a Progressive Compression Strategy [59.1298692559785]
キーバリュー(KV)キャッシュは、トランスフォーマーベースの自己回帰型大言語モデル(LLM)を提供する上で重要なコンポーネントである。
この問題を緩和するためのアプローチとしては、(1) アップサイクルステージに統合された効率的な注意変動、(2) テスト時のKVキャッシュ圧縮、(3) テスト時のKVキャッシュ圧縮がある。
そこで我々は,KV重み行列の低ランク近似を提案し,モデル再学習なしに既存のトランスフォーマーベースLCMとのプラグイン統合を実現する。
本手法は,テスト段階におけるアップサイクリング段階のモデルチューニングやタスク固有のプロファイリングを伴わずに機能するように設計されている。
論文 参考訳(メタデータ) (2024-10-04T03:10:53Z) - ThinK: Thinner Key Cache by Query-Driven Pruning [63.13363917871414]
大規模言語モデル(LLM)は自然言語処理の分野に革命をもたらし、様々なアプリケーションで前例のない性能を達成した。
本稿では,KVキャッシュのメモリ消費の非効率性に対処する長文シナリオに焦点を当てた。
我々は,最小のチャネルを選択的に切断しながら,注目重量損失を最小限に抑える新しいクエリ依存型KVキャッシュプルーニング手法であるThinKを提案する。
論文 参考訳(メタデータ) (2024-07-30T17:59:08Z) - Unlocking Data-free Low-bit Quantization with Matrix Decomposition for KV Cache Compression [87.5604418100301]
キー値(KV)キャッシングは,大規模言語モデルの推論を高速化する重要な手法である。
既存の手法はしばしば精度を損なうか、キャリブレーションのために余分なデータを必要とする。
テンソル分解法に基づく新しいデータフリー低ビット量子化手法である textbfDecoQuant を導入する。
論文 参考訳(メタデータ) (2024-05-21T08:35:10Z) - QAQ: Quality Adaptive Quantization for LLM KV Cache [3.163526369095745]
モデルデプロイメントのボトルネックは、コンテキスト長のキーバリューキャッシュの線形拡張によって生じる。
KVキャッシュのための品質適応量子化スキームQAQを提案する。
論文 参考訳(メタデータ) (2024-03-07T16:42:37Z) - KIVI: A Tuning-Free Asymmetric 2bit Quantization for KV Cache [67.9776980972508]
我々はKIVIというチューニング不要な2ビットKVキャッシュ量子化アルゴリズムを開発した。
KIVI は Llama, Falcon, Mistral のモデルを $mathbf2.6times$ less peak memory を使用しながらほぼ同じ品質を維持することができる。
論文 参考訳(メタデータ) (2024-02-05T06:06:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。