論文の概要: Leveraging Large Models for Evaluating Novel Content: A Case Study on Advertisement Creativity
- arxiv url: http://arxiv.org/abs/2503.00046v1
- Date: Wed, 26 Feb 2025 04:28:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:24:27.917763
- Title: Leveraging Large Models for Evaluating Novel Content: A Case Study on Advertisement Creativity
- Title(参考訳): 新規コンテンツ評価のための大規模モデルの活用--創造性に関する事例研究
- Authors: Zhaoyi Joey Hou, Adriana Kovashka, Xiang Lorraine Li,
- Abstract要約: ビジュアル広告の創造性を非定型性と独創性に分解しようと試みる。
微粒な人間のアノテーションを用いて、このような主観的な問題に特化してタスクのスーツを提案する。
また,提案したベンチマークを用いて,最先端(SoTA)ビジョン言語モデル(VLM)と人間との整合性を評価する。
- 参考スコア(独自算出の注目度): 26.90276644134837
- License:
- Abstract: Evaluating creativity is challenging, even for humans, not only because of its subjectivity but also because it involves complex cognitive processes. Inspired by work in marketing, we attempt to break down visual advertisement creativity into atypicality and originality. With fine-grained human annotations on these dimensions, we propose a suit of tasks specifically for such a subjective problem. We also evaluate the alignment between state-of-the-art (SoTA) vision language models (VLM) and humans on our proposed benchmark, demonstrating both the promises and challenges of using VLMs for automatic creativity assessment.
- Abstract(参考訳): 創造性を評価することは、人間にとっても、その主観性だけでなく、複雑な認知プロセスも伴うため、難しい。
マーケティングの仕事にインスパイアされた私たちは、ビジュアル広告の創造性を非定型性と独創性に分解しようとします。
これらの次元の細かい人間のアノテーションを用いて、このような主観的な問題に特化してタスクのスーツを提案する。
また、提案したベンチマークにおいて、最先端(SoTA)ビジョン言語モデル(VLM)と人間との整合性を評価し、自動創造性評価にVLMを使用することの約束と課題を実証した。
関連論文リスト
- A Causality-aware Paradigm for Evaluating Creativity of Multimodal Large Language Models [100.16387798660833]
オオギリゲーム(オオギリゲーム)は、ユーモアと連想的思考を必要とする創造的な仕事である。
LoTbenchはインタラクティブで因果性を考慮した評価フレームワークである。
その結果、ほとんどのLLMは制約された創造性を示すが、LLMと人間の間の性能格差は克服できないことがわかった。
論文 参考訳(メタデータ) (2025-01-25T09:11:15Z) - CAP: Evaluation of Persuasive and Creative Image Generation [28.49695567630899]
本稿では,生成した広告画像の創造性,適応性,説得性を評価するための3つの評価指標を提案する。
その結果,入力テキストが暗黙的メッセージである場合,現在のテキスト・ツー・イメージモデルは創造性,説得性,アライメントに苦慮していることがわかった。
我々は、より整合性があり、より創造的で、より説得力のある画像を生成する上で、T2Iモデルの能力を高めるためのシンプルで効果的なアプローチを導入します。
論文 参考訳(メタデータ) (2024-12-10T19:54:59Z) - Steering Large Language Models to Evaluate and Amplify Creativity [7.031631627161492]
創造性を判断するために、創造的に書く方法に関するこの知識を活用できることを示します。
我々は,LLMの内部状態の違いを抽出する機械的アプローチを,「空虚」あるいは「創造的」に応答するよう促す。
論文 参考訳(メタデータ) (2024-12-08T20:28:48Z) - KITTEN: A Knowledge-Intensive Evaluation of Image Generation on Visual Entities [93.74881034001312]
テキスト・画像生成モデルにおける実体の忠実度に関する系統的研究を行う。
我々はランドマークの建物、航空機、植物、動物など、幅広い現実世界の視覚的実体を生成する能力に焦点をあてる。
その結果、最も高度なテキスト・画像モデルでさえ、正確な視覚的詳細を持つエンティティを生成できないことが判明した。
論文 参考訳(メタデータ) (2024-10-15T17:50:37Z) - Aligning Vision Models with Human Aesthetics in Retrieval: Benchmarks and Algorithms [91.19304518033144]
検索システムにおける視覚モデルと人間の審美基準の整合を図る。
本研究では、視覚モデルと人間の美学をよりよく整合させるために、視覚モデルを微調整する嗜好に基づく強化学習手法を提案する。
論文 参考訳(メタデータ) (2024-06-13T17:59:20Z) - Art or Artifice? Large Language Models and the False Promise of
Creativity [53.04834589006685]
本稿では,創造性を製品として評価するTorrance Test of Creative Writing (TTCW)を提案する。
TTCWは14のバイナリテストで構成されており、Fluency、Flexibility、Originality、Elaborationの3次元に分かれている。
分析の結果,LPM生成したストーリーはプロのストーリーよりもTTCWが3~10倍少ないことが判明した。
論文 参考訳(メタデータ) (2023-09-25T22:02:46Z) - Let's ViCE! Mimicking Human Cognitive Behavior in Image Generation
Evaluation [96.74302670358145]
生成/編集された画像と対応するプロンプト/インストラクションの整合性を評価するために,視覚概念評価(ViCE)の自動手法を提案する。
ViCEは、Large Language Models(LLM)とVisual Question Answering(VQA)の強みを統合パイプラインに統合し、品質評価において人間の認知プロセスを再現することを目指している。
論文 参考訳(メタデータ) (2023-07-18T16:33:30Z) - On the Creativity of Large Language Models [2.4555276449137042]
大規模言語モデル(LLM)は、人工知能のいくつかの領域に革命をもたらしている。
本稿では、まず、創造性理論のレンズ下でのLCMの開発について分析する。
そして、私たちは、製品、プロセス、プレス、そして人という、異なる古典的な視点を考えます。
最後に、創造産業に焦点をあてて、これらの技術の社会的影響について検討する。
論文 参考訳(メタデータ) (2023-03-27T18:00:01Z) - Towards Creativity Characterization of Generative Models via Group-based
Subset Scanning [64.6217849133164]
創造的プロセスを特定し,定量化し,特徴付けるグループベースサブセットスキャンを提案する。
創造的なサンプルは、データセット全体にわたる通常のサンプルや非創造的なサンプルよりも大きな異常のサブセットを生成する。
論文 参考訳(メタデータ) (2022-03-01T15:07:14Z) - DeepCreativity: Measuring Creativity with Deep Learning Techniques [2.5426469613007012]
本稿では,創造性の自動評価に生成学習技術を用いる可能性について検討する。
我々は、価値、ノベルティ、サプライズによって構成される創造性の定義に基づいて、DeepCreativityという新しい尺度を導入する。
論文 参考訳(メタデータ) (2022-01-16T19:00:01Z) - Creativity of Deep Learning: Conceptualization and Assessment [1.5738019181349994]
我々は,創造的領域における生成的深層学習の現在の応用を概念化し,評価するために,計算的創造性からの洞察を利用する。
私たちは、現在のシステムと、人間の創造性の異なるモデルと、その欠点の類似点を強調します。
論文 参考訳(メタデータ) (2020-12-03T21:44:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。