論文の概要: Personalized Causal Graph Reasoning for LLMs: A Case Study on Dietary Recommendations
- arxiv url: http://arxiv.org/abs/2503.00134v1
- Date: Fri, 28 Feb 2025 19:25:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:20:42.595290
- Title: Personalized Causal Graph Reasoning for LLMs: A Case Study on Dietary Recommendations
- Title(参考訳): LLMのためのパーソナライズされた因果グラフ推論:食事勧告を事例として
- Authors: Zhongqi Yang, Amir Rahmani,
- Abstract要約: 本稿では,大規模言語モデルを強化するエージェントフレームワークとしてパーソナライズされた因果グラフ推論を提案する。
本研究は, 食生活の暗黙的な影響による個人的推論を必要とする栄養指向の食事レコメンデーションのケーススタディで評価した。
以上の結果から, 提案手法は, 3つの時間窓にまたがる平均グルコースiAUCを減らすために, パーソナライズされたダイエットレコメンデーションを効率的に提供できることが示唆された。
- 参考スコア(独自算出の注目度): 1.6114012813668932
- License:
- Abstract: Large Language Models (LLMs) effectively leverage common-sense knowledge for general reasoning, yet they struggle with personalized reasoning when tasked with interpreting multifactor personal data. This limitation restricts their applicability in domains that require context-aware decision-making tailored to individuals. This paper introduces Personalized Causal Graph Reasoning as an agentic framework that enhances LLM reasoning by incorporating personal causal graphs derived from data of individuals. These graphs provide a foundation that guides the LLM's reasoning process. We evaluate it on a case study on nutrient-oriented dietary recommendations, which requires personal reasoning due to the implicit unique dietary effects. We propose a counterfactual evaluation to estimate the efficiency of LLM-recommended foods for glucose management. Results demonstrate that the proposed method efficiently provides personalized dietary recommendations to reduce average glucose iAUC across three time windows, which outperforms the previous approach. LLM-as-a-judge evaluation results indicate that our proposed method enhances personalization in the reasoning process.
- Abstract(参考訳): 大規模言語モデル(LLM)は、一般的な推論のために常識的な知識を効果的に活用するが、多要素の個人データを解釈するタスクを行う場合、パーソナライズされた推論に苦労する。
この制限は、個人に適したコンテキスト対応の意思決定を必要とする領域における適用性を制限する。
本稿では,個人データから派生した個人用因果グラフを取り入れ,LSM推論を強化するエージェントフレームワークとしてパーソナライズされた因果グラフ推論を提案する。
これらのグラフは、LLMの推論プロセスのガイドとなる基盤を提供する。
本研究は, 食生活の暗黙的な影響による個人的推論を必要とする栄養指向の食事レコメンデーションのケーススタディで評価した。
グルコース管理のためのLCM推奨食品の効率を推定するために, 逆効果評価法を提案する。
以上の結果から, 提案手法は, 3つの時間窓にまたがる平均グルコースiAUCを減らし, 従来よりも優れた食生活を効率よく提供できることが示唆された。
LLM-as-a-judge 評価の結果,提案手法は推論過程におけるパーソナライズを高めることが示唆された。
関連論文リスト
- MOPI-HFRS: A Multi-objective Personalized Health-aware Food Recommendation System with LLM-enhanced Interpretation [50.309987904297415]
Yelpのような主要な食品レコメンデーションプラットフォームは、ユーザの選択した健康性よりも、ユーザの食事の好みを優先している。
我々はMOPI-HFRS(Multi-Objective Personalized Interpretable Health-Aware Food Recommendation System)を開発した。
ユーザの好み、パーソナライズされた健康、栄養の多様性の3つの目標と、大きな言語モデル(LLM)強化推論モジュールを共同で最適化することで、食品レコメンデーションを提供する。
論文 参考訳(メタデータ) (2024-12-12T01:02:09Z) - ReasoningRec: Bridging Personalized Recommendations and Human-Interpretable Explanations through LLM Reasoning [15.049688896236821]
本稿では、推論に基づくレコメンデーションフレームワークReasoningRecについて述べる。
ReasoningRecはレコメンデーションと人間の解釈可能な説明のギャップを埋める。
実証的な評価では、ReasoningRecは最先端の手法を最大12.5%上回っている。
論文 参考訳(メタデータ) (2024-10-30T16:37:04Z) - Uncovering Factor Level Preferences to Improve Human-Model Alignment [58.50191593880829]
PROFILEは、好みを駆動する特定の要因の影響を明らかにし、定量化するフレームワークである。
ProFILE の因子レベル分析は、人間モデルのアライメントと不適応の背後にある 'なぜ' を説明している。
我々は、不整合要因に対処するなど、要因レベルの洞察の活用が、人間の嗜好との整合性をいかに改善するかを実証する。
論文 参考訳(メタデータ) (2024-10-09T15:02:34Z) - Leveraging LLM Reasoning Enhances Personalized Recommender Systems [25.765908301183188]
本稿では,レコメンデーションシステム (RecSys) におけるLarge Language Models (LLMs) の推論の適用が,大きな課題であることを示す。
本研究では、RecSysの推論をよりよく理解し、タスク品質がどのように改善されるかを示すために、いくつかの側面について検討する。
論文 参考訳(メタデータ) (2024-07-22T20:18:50Z) - Evaluating Human Alignment and Model Faithfulness of LLM Rationale [66.75309523854476]
大規模言語モデル(LLM)が,その世代を理論的にどのように説明するかを考察する。
提案手法は帰属に基づく説明よりも「偽り」が少ないことを示す。
論文 参考訳(メタデータ) (2024-06-28T20:06:30Z) - Fairer Preferences Elicit Improved Human-Aligned Large Language Model Judgments [41.25558612970942]
大規模言語モデル (LLMs) が優先バイアスを示し, 設計に敏感であることを示す。
この現象に触発された自動ゼロショット評価指向のプロンプト最適化フレームワークZEPOを提案する。
論文 参考訳(メタデータ) (2024-06-17T09:48:53Z) - A Survey on Human Preference Learning for Large Language Models [81.41868485811625]
近年の多目的大言語モデル(LLM)の急激な増加は、より有能な基礎モデルと人間の意図を優先学習によって整合させることに大きく依存している。
本調査では、選好フィードバックのソースとフォーマット、選好信号のモデリングと使用、および、整列 LLM の評価について述べる。
論文 参考訳(メタデータ) (2024-06-17T03:52:51Z) - Evaluating Interventional Reasoning Capabilities of Large Language Models [58.52919374786108]
大規模言語モデル(LLM)は意思決定タスクを自動化するために使用される。
本稿では,LPMが介入に応じてデータ生成プロセスの知識を正確に更新できるかどうかを評価する。
さまざまな因果グラフ(例えば、コンバウンディング、仲介)と変数タイプにまたがるベンチマークを作成します。
これらのベンチマークにより、LLMが事実を記憶したり、他のショートカットを見つけたりすることで、変化を正確に予測する能力を切り離すことができます。
論文 参考訳(メタデータ) (2024-04-08T14:15:56Z) - LLMs-based Few-Shot Disease Predictions using EHR: A Novel Approach Combining Predictive Agent Reasoning and Critical Agent Instruction [38.11497959553319]
本研究では,構造化患者訪問データを自然言語物語に変換するための大規模言語モデルの適用可能性について検討する。
様々なERH予測指向のプロンプト戦略を用いて,LLMのゼロショット性能と少数ショット性能を評価した。
提案手法を用いることで,従来のERHによる疾患予測の教師付き学習法と比較して,LLMの精度は極めて低いことが示唆された。
論文 参考訳(メタデータ) (2024-03-19T18:10:13Z) - Mitigating Large Language Model Hallucinations via Autonomous Knowledge
Graph-based Retrofitting [51.7049140329611]
本稿では,知識グラフに基づくリトロフィッティング(KGR)を提案する。
実験により,実QAベンチマークにおいて,KGRはLLMの性能を大幅に向上できることが示された。
論文 参考訳(メタデータ) (2023-11-22T11:08:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。