PreMind: Multi-Agent Video Understanding for Advanced Indexing of Presentation-style Videos
- URL: http://arxiv.org/abs/2503.00162v1
- Date: Fri, 28 Feb 2025 20:17:48 GMT
- Title: PreMind: Multi-Agent Video Understanding for Advanced Indexing of Presentation-style Videos
- Authors: Kangda Wei, Zhengyu Zhou, Bingqing Wang, Jun Araki, Lukas Lange, Ruihong Huang, Zhe Feng,
- Abstract summary: PreMind is a novel multi-agent multimodal framework for understanding/indexing lecture videos.<n>It generates multimodal indexes through three key steps: extracting slide visual content, transcribing speech narratives, and consolidating these visual and speech contents into an integrated understanding.<n>Three innovative mechanisms are also proposed to improve performance: leveraging prior lecture knowledge to refine visual understanding, detecting/correcting speech transcription errors using a VLM, and utilizing a critic agent for dynamic iterative self-reflection in vision analysis.
- Score: 22.39414772037232
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In recent years, online lecture videos have become an increasingly popular resource for acquiring new knowledge. Systems capable of effectively understanding/indexing lecture videos are thus highly desirable, enabling downstream tasks like question answering to help users efficiently locate specific information within videos. This work proposes PreMind, a novel multi-agent multimodal framework that leverages various large models for advanced understanding/indexing of presentation-style videos. PreMind first segments videos into slide-presentation segments using a Vision-Language Model (VLM) to enhance modern shot-detection techniques. Each segment is then analyzed to generate multimodal indexes through three key steps: (1) extracting slide visual content, (2) transcribing speech narratives, and (3) consolidating these visual and speech contents into an integrated understanding. Three innovative mechanisms are also proposed to improve performance: leveraging prior lecture knowledge to refine visual understanding, detecting/correcting speech transcription errors using a VLM, and utilizing a critic agent for dynamic iterative self-reflection in vision analysis. Compared to traditional video indexing methods, PreMind captures rich, reliable multimodal information, allowing users to search for details like abbreviations shown only on slides. Systematic evaluations on the public LPM dataset and an internal enterprise dataset are conducted to validate PreMind's effectiveness, supported by detailed analyses.
Related papers
- Video Summarization with Large Language Models [41.51242348081083]
We propose a new video summarization framework that leverages the capabilities of recent Large Language Models (LLMs)
Our method, dubbed LLM-based Video Summarization (LLMVS), translates video frames into a sequence of captions using a Muti-modal Large Language Model (MLLM)
Our experimental results demonstrate the superiority of the proposed method over existing ones in standard benchmarks.
arXiv Detail & Related papers (2025-04-15T13:56:14Z) - Realizing Video Summarization from the Path of Language-based Semantic Understanding [19.825666473712197]
We propose a novel video summarization framework inspired by the Mixture of Experts (MoE) paradigm.
Our approach integrates multiple VideoLLMs to generate comprehensive and coherent textual summaries.
arXiv Detail & Related papers (2024-10-06T15:03:22Z) - VIMI: Grounding Video Generation through Multi-modal Instruction [89.90065445082442]
Existing text-to-video diffusion models rely solely on text-only encoders for their pretraining.
We construct a large-scale multimodal prompt dataset by employing retrieval methods to pair in-context examples with the given text prompts.
We finetune the model from the first stage on three video generation tasks, incorporating multi-modal instructions.
arXiv Detail & Related papers (2024-07-08T18:12:49Z) - Chain-of-Spot: Interactive Reasoning Improves Large Vision-Language Models [81.71651422951074]
Chain-of-Spot (CoS) method is a novel approach that enhances feature extraction by focusing on key regions of interest.
This technique allows LVLMs to access more detailed visual information without altering the original image resolution.
Our empirical findings demonstrate a significant improvement in LVLMs' ability to understand and reason about visual content.
arXiv Detail & Related papers (2024-03-19T17:59:52Z) - Tuning Large Multimodal Models for Videos using Reinforcement Learning from AI Feedback [38.708690624594794]
Video and text multimodal alignment remains challenging, primarily due to the deficient volume and quality of multimodal instruction-tune data.
We present a novel alignment strategy that employs multimodal AI system to oversee itself called Reinforcement Learning from AI Feedback (RLAIF)
In specific, we propose context-aware reward modeling by providing detailed video descriptions as context during the generation of preference feedback.
arXiv Detail & Related papers (2024-02-06T06:27:40Z) - Video-LaVIT: Unified Video-Language Pre-training with Decoupled Visual-Motional Tokenization [52.63845811751936]
Video pre-training is challenging due to the modeling of its dynamics video.
In this paper, we address such limitations in video pre-training with an efficient video decomposition.
Our framework is both capable of comprehending and generating image and video content, as demonstrated by its performance across 13 multimodal benchmarks.
arXiv Detail & Related papers (2024-02-05T16:30:49Z) - Video Understanding with Large Language Models: A Survey [97.29126722004949]
Given the remarkable capabilities of large language models (LLMs) in language and multimodal tasks, this survey provides a detailed overview of recent advancements in video understanding.
The emergent capabilities Vid-LLMs are surprisingly advanced, particularly their ability for open-ended multi-granularity reasoning.
This survey presents a comprehensive study of the tasks, datasets, benchmarks, and evaluation methodologies for Vid-LLMs.
arXiv Detail & Related papers (2023-12-29T01:56:17Z) - VaQuitA: Enhancing Alignment in LLM-Assisted Video Understanding [63.075626670943116]
We introduce a cutting-edge framework, VaQuitA, designed to refine the synergy between video and textual information.
At the data level, instead of sampling frames uniformly, we implement a sampling method guided by CLIP-score rankings.
At the feature level, we integrate a trainable Video Perceiver alongside a Visual-Query Transformer.
arXiv Detail & Related papers (2023-12-04T19:48:02Z) - VidCoM: Fast Video Comprehension through Large Language Models with Multimodal Tools [44.78291853329394]
textbfVidCoM is a fast adaptive framework that leverages Large Language Models (LLMs) to reason about videos using lightweight visual tools.
An InsOVER algorithm locates the corresponding video events based on an efficient Hungarian matching between decompositions of linguistic instructions and video events.
arXiv Detail & Related papers (2023-10-16T17:05:56Z) - Video-Teller: Enhancing Cross-Modal Generation with Fusion and
Decoupling [79.49128866877922]
Video-Teller is a video-language foundation model that leverages multi-modal fusion and fine-grained modality alignment.
Video-Teller boosts the training efficiency by utilizing frozen pretrained vision and language modules.
It capitalizes on the robust linguistic capabilities of large language models, enabling the generation of both concise and elaborate video descriptions.
arXiv Detail & Related papers (2023-10-08T03:35:27Z) - Language as the Medium: Multimodal Video Classification through text
only [3.744589644319257]
We propose a new model-agnostic approach for generating detailed textual descriptions that captures multimodal video information.
Our method leverages the extensive knowledge learnt by large language models, such as GPT-3.5 or Llama2.
Our evaluations on popular action recognition benchmarks, such as UCF-101 or Kinetics, show these context-rich descriptions can be successfully used in video understanding tasks.
arXiv Detail & Related papers (2023-09-19T17:32:21Z) - Let's Think Frame by Frame with VIP: A Video Infilling and Prediction
Dataset for Evaluating Video Chain-of-Thought [62.619076257298204]
We motivate framing video reasoning as the sequential understanding of a small number of video reasonings.
We introduce VIP, an inference-time challenge dataset designed to explore models' reasoning capabilities through video chain-of-thought.
We benchmark GPT-4, GPT-3, and VICUNA on VIP, demonstrate the performance gap in complex video reasoning tasks, and encourage future work.
arXiv Detail & Related papers (2023-05-23T10:26:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.