論文の概要: Optimal Transfer Learning for Missing Not-at-Random Matrix Completion
- arxiv url: http://arxiv.org/abs/2503.00174v1
- Date: Fri, 28 Feb 2025 20:40:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:24:53.352501
- Title: Optimal Transfer Learning for Missing Not-at-Random Matrix Completion
- Title(参考訳): Not-at-Random Matrix Completion の最適転送学習
- Authors: Akhil Jalan, Yassir Jedra, Arya Mazumdar, Soumendu Sundar Mukherjee, Purnamrita Sarkar,
- Abstract要約: 生物問題に動機づけられたMNAR(Missing Not-at-Random)環境におけるマトリックス完成のための伝達学習について検討した。
ターゲット行列$Q$は全行と列が欠落しており、サイド情報なしでは推定が不可能である。
我々は行と列のアクティブサンプリングとパッシブサンプリングの両方を考慮し、各設定においてエントリワイズ推定誤差に対して最小限の下位境界を確立する。
- 参考スコア(独自算出の注目度): 18.919769656055706
- License:
- Abstract: We study transfer learning for matrix completion in a Missing Not-at-Random (MNAR) setting that is motivated by biological problems. The target matrix $Q$ has entire rows and columns missing, making estimation impossible without side information. To address this, we use a noisy and incomplete source matrix $P$, which relates to $Q$ via a feature shift in latent space. We consider both the active and passive sampling of rows and columns. We establish minimax lower bounds for entrywise estimation error in each setting. Our computationally efficient estimation framework achieves this lower bound for the active setting, which leverages the source data to query the most informative rows and columns of $Q$. This avoids the need for incoherence assumptions required for rate optimality in the passive sampling setting. We demonstrate the effectiveness of our approach through comparisons with existing algorithms on real-world biological datasets.
- Abstract(参考訳): 本研究では,生物問題に動機づけられたMNAR(Missing Not-at-Random)環境におけるマトリックス完成のための伝達学習について検討した。
ターゲット行列$Q$は全行と列が欠落しており、サイド情報なしでは推定が不可能である。
これを解決するために、雑音および不完全ソース行列$P$を使用し、潜在空間における特徴シフトを介して$Q$と関連する。
行と列のアクティブサンプリングとパッシブサンプリングの両方について検討する。
各設定においてエントリワイズ推定誤差を最小値下限に設定する。
我々の計算効率の良い推定フレームワークは、この低境界のアクティブな設定を実現し、ソースデータを利用して最も情報に富んだ行や列を$Q$で問い合わせる。
これにより、パッシブサンプリング設定におけるレート最適性に必要な不整合仮定が不要になる。
実世界の生物データセットにおける既存アルゴリズムとの比較により,本手法の有効性を実証する。
関連論文リスト
- Model-free Low-Rank Reinforcement Learning via Leveraged Entry-wise Matrix Estimation [48.92318828548911]
政策改善と政策評価の段階を交互に行うモデルフリー学習アルゴリズムであるLoRa-PI(Low-Rank Policy Iteration)を提案する。
LoRa-PIは$widetildeO(S+Aover mathrmpoly (1-gamma)varepsilon2)$サンプルを使用して$varepsilon$-optimal Policyを学習する。
論文 参考訳(メタデータ) (2024-10-30T20:22:17Z) - Minimax and Communication-Efficient Distributed Best Subset Selection with Oracle Property [0.358439716487063]
大規模データの爆発はシングルマシンシステムの処理能力を上回っている。
分散推論への伝統的なアプローチは、高次元データセットにおいて真の疎性を達成するのにしばしば苦労する。
そこで本稿では,これらの問題に対処する2段階分散ベストサブセット選択アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-08-30T13:22:08Z) - Nearly Minimax Optimal Regret for Learning Linear Mixture Stochastic
Shortest Path [80.60592344361073]
線形混合遷移カーネルを用いた最短経路(SSP)問題について検討する。
エージェントは繰り返し環境と対話し、累積コストを最小化しながら特定の目標状態に到達する。
既存の作業は、イテレーションコスト関数の厳密な下限や、最適ポリシーに対する期待長の上限を仮定することが多い。
論文 参考訳(メタデータ) (2024-02-14T07:52:00Z) - One-sided Matrix Completion from Two Observations Per Row [95.87811229292056]
行列の欠落値を$XTX$で計算する自然アルゴリズムを提案する。
合成データの一方の回収と低被覆ゲノムシークエンシングについて,本アルゴリズムの評価を行った。
論文 参考訳(メタデータ) (2023-06-06T22:35:16Z) - Adaptive Noisy Matrix Completion [0.0]
回復を目標とする行列 $mathbfM$ は、束縛された小さな雑音を付加した低ランク行列として構成されていると仮定する。
この問題を適応的な設定で検討し、下層の低ランク部分空間と雑音付加部分空間との角度の上限を連続的に推定する。
論文 参考訳(メタデータ) (2022-03-16T01:20:18Z) - Sparse Plus Low Rank Matrix Decomposition: A Discrete Optimization
Approach [6.952045528182883]
スパースプラス低ランク分解問題(SLR)について検討する。
SLRはオペレーションリサーチと機械学習の基本的な問題である。
本稿では,SLRの新たな定式化を導入し,その基礎となる離散性をモデル化する。
論文 参考訳(メタデータ) (2021-09-26T20:49:16Z) - Sample Efficient Linear Meta-Learning by Alternating Minimization [74.40553081646995]
低次元部分空間と回帰器を交互に学習する簡易交互最小化法(MLLAM)について検討する。
定数部分空間次元に対して、MLLAMはタスクあたり$Omega(log d)$サンプルしか必要とせず、ほぼ最適推定誤差が得られることを示す。
MLLAMと同様の強力な統計的保証を保証する新しいタスクサブセット選択スキームを提案する。
論文 参考訳(メタデータ) (2021-05-18T06:46:48Z) - Solving weakly supervised regression problem using low-rank manifold
regularization [77.34726150561087]
我々は弱い教師付き回帰問題を解く。
weakly"の下では、いくつかのトレーニングポイントではラベルが知られ、未知のものもあれば、無作為なノイズの存在やリソースの欠如などの理由によって不確かであることが分かっています。
数値的な節ではモンテカルロモデルを用いて提案手法を人工と実のデータセットに適用した。
論文 参考訳(メタデータ) (2021-04-13T23:21:01Z) - Non-Adaptive Adaptive Sampling on Turnstile Streams [57.619901304728366]
カラムサブセット選択、部分空間近似、射影クラスタリング、および空間サブリニアを$n$で使用するターンタイルストリームのボリュームに対する最初の相対エラーアルゴリズムを提供する。
我々の適応的なサンプリング手法は、様々なデータ要約問題に多くの応用をもたらしており、これは最先端を改善するか、より緩和された行列列モデルで以前に研究されただけである。
論文 参考訳(メタデータ) (2020-04-23T05:00:21Z) - Optimal Exact Matrix Completion Under new Parametrization [0.0]
適応サンプリング法を用いて、$m倍 n$ の階数 $r$ の行列の正確な完備化の問題を研究した。
対象行列を正確に復元する行列補完アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-02-06T18:31:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。