Learning Vision-Based Neural Network Controllers with Semi-Probabilistic Safety Guarantees
- URL: http://arxiv.org/abs/2503.00191v1
- Date: Fri, 28 Feb 2025 21:16:42 GMT
- Title: Learning Vision-Based Neural Network Controllers with Semi-Probabilistic Safety Guarantees
- Authors: Xinhang Ma, Junlin Wu, Hussein Sibai, Yiannis Kantaros, Yevgeniy Vorobeychik,
- Abstract summary: We introduce a novel semi-probabilistic verification framework that integrates reachability analysis with conditional generative adversarial networks.<n>Next, we develop a gradient-based training approach that employs a novel safety loss function, safety-aware data-sampling strategy, and curriculum learning.<n> Empirical evaluations in X-Plane 11 airplane landing simulation, CARLA-simulated autonomous lane following, and F1Tenth lane following in a visually-rich miniature environment demonstrate the effectiveness of our method in achieving formal safety guarantees.
- Score: 24.650302053973142
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Ensuring safety in autonomous systems with vision-based control remains a critical challenge due to the high dimensionality of image inputs and the fact that the relationship between true system state and its visual manifestation is unknown. Existing methods for learning-based control in such settings typically lack formal safety guarantees. To address this challenge, we introduce a novel semi-probabilistic verification framework that integrates reachability analysis with conditional generative adversarial networks and distribution-free tail bounds to enable efficient and scalable verification of vision-based neural network controllers. Next, we develop a gradient-based training approach that employs a novel safety loss function, safety-aware data-sampling strategy to efficiently select and store critical training examples, and curriculum learning, to efficiently synthesize safe controllers in the semi-probabilistic framework. Empirical evaluations in X-Plane 11 airplane landing simulation, CARLA-simulated autonomous lane following, and F1Tenth lane following in a physical visually-rich miniature environment demonstrate the effectiveness of our method in achieving formal safety guarantees while maintaining strong nominal performance. Our code is available at https://github.com/xhOwenMa/SPVT.
Related papers
- Distributionally Robust Statistical Verification with Imprecise Neural
Networks [4.094049541486327]
A particularly challenging problem in AI safety is providing guarantees on the behavior of high-dimensional autonomous systems.
This paper proposes a novel approach based on a combination of active learning, uncertainty quantification, and neural network verification.
arXiv Detail & Related papers (2023-08-28T18:06:24Z) - In-Distribution Barrier Functions: Self-Supervised Policy Filters that
Avoid Out-of-Distribution States [84.24300005271185]
We propose a control filter that wraps any reference policy and effectively encourages the system to stay in-distribution with respect to offline-collected safe demonstrations.
Our method is effective for two different visuomotor control tasks in simulation environments, including both top-down and egocentric view settings.
arXiv Detail & Related papers (2023-01-27T22:28:19Z) - Evaluating Model-free Reinforcement Learning toward Safety-critical
Tasks [70.76757529955577]
This paper revisits prior work in this scope from the perspective of state-wise safe RL.
We propose Unrolling Safety Layer (USL), a joint method that combines safety optimization and safety projection.
To facilitate further research in this area, we reproduce related algorithms in a unified pipeline and incorporate them into SafeRL-Kit.
arXiv Detail & Related papers (2022-12-12T06:30:17Z) - Recursively Feasible Probabilistic Safe Online Learning with Control Barrier Functions [60.26921219698514]
We introduce a model-uncertainty-aware reformulation of CBF-based safety-critical controllers.
We then present the pointwise feasibility conditions of the resulting safety controller.
We use these conditions to devise an event-triggered online data collection strategy.
arXiv Detail & Related papers (2022-08-23T05:02:09Z) - Sample-efficient Safe Learning for Online Nonlinear Control with Control
Barrier Functions [35.9713619595494]
Reinforcement Learning and continuous nonlinear control have been successfully deployed in multiple domains of complicated sequential decision-making tasks.
Given the exploration nature of the learning process and the presence of model uncertainty, it is challenging to apply them to safety-critical control tasks.
We propose a emphprovably efficient episodic safe learning framework for online control tasks.
arXiv Detail & Related papers (2022-07-29T00:54:35Z) - Differentiable Control Barrier Functions for Vision-based End-to-End
Autonomous Driving [100.57791628642624]
We introduce a safety guaranteed learning framework for vision-based end-to-end autonomous driving.
We design a learning system equipped with differentiable control barrier functions (dCBFs) that is trained end-to-end by gradient descent.
arXiv Detail & Related papers (2022-03-04T16:14:33Z) - Learning Robust Output Control Barrier Functions from Safe Expert Demonstrations [50.37808220291108]
This paper addresses learning safe output feedback control laws from partial observations of expert demonstrations.
We first propose robust output control barrier functions (ROCBFs) as a means to guarantee safety.
We then formulate an optimization problem to learn ROCBFs from expert demonstrations that exhibit safe system behavior.
arXiv Detail & Related papers (2021-11-18T23:21:00Z) - Safe Active Dynamics Learning and Control: A Sequential
Exploration-Exploitation Framework [30.58186749790728]
We propose a theoretically-justified approach to maintaining safety in the presence of dynamics uncertainty.
Our framework guarantees the high-probability satisfaction of all constraints at all times jointly.
This theoretical analysis also motivates two regularizers of last-layer meta-learning models that improve online adaptation capabilities.
arXiv Detail & Related papers (2020-08-26T17:39:58Z) - Chance-Constrained Trajectory Optimization for Safe Exploration and
Learning of Nonlinear Systems [81.7983463275447]
Learning-based control algorithms require data collection with abundant supervision for training.
We present a new approach for optimal motion planning with safe exploration that integrates chance-constrained optimal control with dynamics learning and feedback control.
arXiv Detail & Related papers (2020-05-09T05:57:43Z) - Neural Lyapunov Model Predictive Control: Learning Safe Global
Controllers from Sub-optimal Examples [4.777323087050061]
In many real-world and industrial applications, it is typical to have an existing control strategy, for instance, execution from a human operator.
The objective of this work is to improve upon this unknown, safe but suboptimal policy by learning a new controller that retains safety and stability.
The proposed algorithm alternatively learns the terminal cost and updates the MPC parameters according to a stability metric.
arXiv Detail & Related papers (2020-02-21T16:57:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.