Domain Knowledge-Based Automated Analog Circuit Design with Deep
Reinforcement Learning
- URL: http://arxiv.org/abs/2202.13185v1
- Date: Sat, 26 Feb 2022 16:56:45 GMT
- Title: Domain Knowledge-Based Automated Analog Circuit Design with Deep
Reinforcement Learning
- Authors: Weidong Cao, Mouhacine Benosman, Xuan Zhang, Rui Ma
- Abstract summary: This paper presents a deep reinforcement learning method to expedite the design of analog circuits.
Experimental results show it achieves human-level design accuracy (99%) with 1.5x efficiency of existing best-performing methods.
- Score: 6.599793419469274
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The design automation of analog circuits is a longstanding challenge in the
integrated circuit field. This paper presents a deep reinforcement learning
method to expedite the design of analog circuits at the pre-layout stage, where
the goal is to find device parameters to fulfill desired circuit
specifications. Our approach is inspired by experienced human designers who
rely on domain knowledge of analog circuit design (e.g., circuit topology and
couplings between circuit specifications) to tackle the problem. Unlike all
prior methods, our method originally incorporates such key domain knowledge
into policy learning with a graph-based policy network, thereby best modeling
the relations between circuit parameters and design targets. Experimental
results on exemplary circuits show it achieves human-level design accuracy
(~99%) with 1.5x efficiency of existing best-performing methods. Our method
also shows better generalization ability to unseen specifications and
optimality in circuit performance optimization. Moreover, it applies to
designing diverse analog circuits across different semiconductor technologies,
breaking the limitations of prior ad-hoc methods in designing one particular
type of analog circuits with conventional semiconductor technology.
Related papers
- AICircuit: A Multi-Level Dataset and Benchmark for AI-Driven Analog Integrated Circuit Design [10.354863964933019]
We present AICircuit, a benchmark for developing and evaluating machine learning algorithms in analog and radio-frequency circuit design.
A major obstacle for bearing the power of machine learning in circuit design is the availability of a generic and diverse dataset.
We extensively evaluate various ML algorithms on the dataset, revealing the potential of ML algorithms in learning the mapping from the design specifications to the desired circuit parameters.
arXiv Detail & Related papers (2024-07-22T20:32:16Z) - LaMAGIC: Language-Model-based Topology Generation for Analog Integrated Circuits [17.002169206594793]
We introduce LaMAGIC, a pioneering language model-based topology generation model.
LaMAGIC can efficiently generate an optimized circuit design from the custom specification in a single pass.
LaMAGIC achieves a success rate of up to 96% under a strict tolerance of 0.01.
arXiv Detail & Related papers (2024-07-19T22:51:41Z) - Finding Transformer Circuits with Edge Pruning [71.12127707678961]
We propose Edge Pruning as an effective and scalable solution to automated circuit discovery.
Our method finds circuits in GPT-2 that use less than half the number of edges compared to circuits found by previous methods.
Thanks to its efficiency, we scale Edge Pruning to CodeLlama-13B, a model over 100x the scale that prior methods operate on.
arXiv Detail & Related papers (2024-06-24T16:40:54Z) - AnalogCoder: Analog Circuit Design via Training-Free Code Generation [28.379045024642668]
We introduce AnalogCoder, the first training-free Large Language Models agent for designing analog circuits.
It incorporates a feedback-enhanced flow with tailored domain-specific prompts, enabling the automated and self-correcting design of analog circuits.
It has successfully designed 20 circuits, 5 more than standard GPT-4o.
arXiv Detail & Related papers (2024-05-23T17:13:52Z) - CktGNN: Circuit Graph Neural Network for Electronic Design Automation [67.29634073660239]
This paper presents a Circuit Graph Neural Network (CktGNN) that simultaneously automates the circuit topology generation and device sizing.
We introduce Open Circuit Benchmark (OCB), an open-sourced dataset that contains $10$K distinct operational amplifiers.
Our work paves the way toward a learning-based open-sourced design automation for analog circuits.
arXiv Detail & Related papers (2023-08-31T02:20:25Z) - Learning to Design Analog Circuits to Meet Threshold Specifications [2.5818330243826924]
We propose a method for generating from simulation data a dataset on which a system can be trained to design circuits to meet threshold specifications.
We show that our method consistently reaches success rate better than 90% at 5% error margin, while also improving data efficiency by upward of an order of magnitude.
arXiv Detail & Related papers (2023-07-25T23:25:05Z) - Adaptive Planning Search Algorithm for Analog Circuit Verification [53.97809573610992]
We propose a machine learning (ML) approach, which uses less simulations.
We show that the proposed approach is able to provide OCCs closer to the specifications for all circuits.
arXiv Detail & Related papers (2023-06-23T12:57:46Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
This paper proposes the first end-to-end differentiable meta-BO framework that generalises neural processes to learn acquisition functions via transformer architectures.
We enable this end-to-end framework with reinforcement learning (RL) to tackle the lack of labelled acquisition data.
arXiv Detail & Related papers (2023-05-25T10:58:46Z) - Domain Knowledge-Infused Deep Learning for Automated
Analog/Radio-Frequency Circuit Parameter Optimization [6.599793419469274]
This paper presents a reinforcement learning method to automate the analog circuit parameter optimization.
It is inspired by human experts who rely on domain knowledge of analog circuit design.
Experimental results on exemplary circuits show it achieves human-level design accuracy (99%) 1.5X efficiency of existing best-performing methods.
arXiv Detail & Related papers (2022-04-27T13:58:51Z) - Quantum circuit debugging and sensitivity analysis via local inversions [62.997667081978825]
We present a technique that pinpoints the sections of a quantum circuit that affect the circuit output the most.
We demonstrate the practicality and efficacy of the proposed technique by applying it to example algorithmic circuits implemented on IBM quantum machines.
arXiv Detail & Related papers (2022-04-12T19:39:31Z) - Ranking Cost: Building An Efficient and Scalable Circuit Routing Planner
with Evolution-Based Optimization [49.207538634692916]
We propose a new algorithm for circuit routing, named Ranking Cost, to form an efficient and trainable router.
In our method, we introduce a new set of variables called cost maps, which can help the A* router to find out proper paths.
Our algorithm is trained in an end-to-end manner and does not use any artificial data or human demonstration.
arXiv Detail & Related papers (2021-10-08T07:22:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.