論文の概要: Flow Matching for Medical Image Synthesis: Bridging the Gap Between Speed and Quality
- arxiv url: http://arxiv.org/abs/2503.00266v1
- Date: Sat, 01 Mar 2025 00:49:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:15:37.823658
- Title: Flow Matching for Medical Image Synthesis: Bridging the Gap Between Speed and Quality
- Title(参考訳): 医用画像合成のためのフローマッチング:スピードと品質のギャップを埋める
- Authors: Milad Yazdani, Yasamin Medghalchi, Pooria Ashrafian, Ilker Hacihaliloglu, Dena Shahriari,
- Abstract要約: 本稿では,画像生成を高速化する最適な輸送フローマッチング手法を提案する。
ソースとターゲットの分布のより直線的なマッピングを導入することにより,提案手法は推論時間を著しく短縮する。
本研究は, この枠組みの効率性と汎用性を実証し, 医用画像の応用に有望な進歩をもたらした。
- 参考スコア(独自算出の注目度): 1.0922645515457987
- License:
- Abstract: Deep learning models have emerged as a powerful tool for various medical applications. However, their success depends on large, high-quality datasets that are challenging to obtain due to privacy concerns and costly annotation. Generative models, such as diffusion models, offer a potential solution by synthesizing medical images, but their practical adoption is hindered by long inference times. In this paper, we propose the use of an optimal transport flow matching approach to accelerate image generation. By introducing a straighter mapping between the source and target distribution, our method significantly reduces inference time while preserving and further enhancing the quality of the outputs. Furthermore, this approach is highly adaptable, supporting various medical imaging modalities, conditioning mechanisms (such as class labels and masks), and different spatial dimensions, including 2D and 3D. Beyond image generation, it can also be applied to related tasks such as image enhancement. Our results demonstrate the efficiency and versatility of this framework, making it a promising advancement for medical imaging applications. Code with checkpoints and a synthetic dataset (beneficial for classification and segmentation) is now available on: https://github.com/milad1378yz/MOTFM.
- Abstract(参考訳): ディープラーニングモデルは、さまざまな医療応用のための強力なツールとして登場した。
しかし、彼らの成功は、プライバシの懸念とコストのかかるアノテーションのために入手が困難な、大規模で高品質なデータセットに依存している。
拡散モデルのような生成モデルは、医用画像の合成による潜在的な解決策を提供するが、その実践は長い推論時間によって妨げられる。
本稿では,画像生成を高速化する最適な輸送フローマッチング手法を提案する。
ソースとターゲットの分布のより直線的なマッピングを導入することにより,提案手法は,出力の保存と品質の向上を両立させながら,推論時間を著しく短縮する。
さらに、このアプローチは高度に適応可能であり、様々な医用画像モダリティ、条件付け機構(クラスラベルやマスクなど)、2D、3Dを含む異なる空間次元をサポートする。
画像生成以外にも、画像強調などの関連するタスクにも適用することができる。
本研究は, この枠組みの効率性と汎用性を実証し, 医用画像の応用に有望な進歩をもたらした。
チェックポイントと合成データセット(分類とセグメンテーションのメリット)を備えたコードは、https://github.com/milad1378yz/MOTFMで利用可能になった。
関連論文リスト
- Latent Drifting in Diffusion Models for Counterfactual Medical Image Synthesis [55.959002385347645]
大規模なデータセットのトレーニングによるスケーリングは、画像生成の品質と忠実度を高め、拡散モデルによる操作を可能にすることが示されている。
遅延ドリフトにより、医療画像に対して拡散モデルを条件付けし、反ファクト画像生成の複雑なタスクに適合させることができる。
本研究は,異なる微調整方式と組み合わせた場合,様々なシナリオにおいて顕著な性能向上を示すものである。
論文 参考訳(メタデータ) (2024-12-30T01:59:34Z) - Discriminative Hamiltonian Variational Autoencoder for Accurate Tumor Segmentation in Data-Scarce Regimes [2.8498944632323755]
医用画像分割のためのエンドツーエンドハイブリッドアーキテクチャを提案する。
ハミルトン変分オートエンコーダ(HVAE)と識別正則化を用いて生成画像の品質を向上する。
我々のアーキテクチャはスライス・バイ・スライス・ベースで3Dボリュームを分割し、リッチな拡張データセットをカプセル化する。
論文 参考訳(メタデータ) (2024-06-17T15:42:08Z) - Learned representation-guided diffusion models for large-image generation [58.192263311786824]
自己教師型学習(SSL)からの埋め込みを条件とした拡散モデルを訓練する新しいアプローチを導入する。
我々の拡散モデルは、これらの特徴を高品質な病理組織学およびリモートセンシング画像に投影することに成功した。
実画像のバリエーションを生成して実データを増やすことにより、パッチレベルおよび大規模画像分類タスクの下流精度が向上する。
論文 参考訳(メタデータ) (2023-12-12T14:45:45Z) - DiffBoost: Enhancing Medical Image Segmentation via Text-Guided Diffusion Model [3.890243179348094]
医療応用のための堅牢で成功したディープラーニングモデルを開発するためには、大規模で大きな変動のある高品質なデータが不可欠である。
本稿では,DiffBoostと呼ばれる医用画像合成のための制御可能な拡散モデルを提案する。
近年の拡散確率モデルを利用して、現実的で多様な合成医用画像データを生成する。
論文 参考訳(メタデータ) (2023-10-19T16:18:02Z) - Multitask Brain Tumor Inpainting with Diffusion Models: A Methodological
Report [0.0]
インペイントアルゴリズムは、入力画像の1つ以上の領域を変更することができるDL生成モデルのサブセットである。
これらのアルゴリズムの性能は、その限られた出力量のために、しばしば準最適である。
拡散確率モデル(DDPM)は、GANに匹敵する品質の結果を生成することができる、最近導入された生成ネットワークのファミリーである。
論文 参考訳(メタデータ) (2022-10-21T17:13:14Z) - Harmonizing Pathological and Normal Pixels for Pseudo-healthy Synthesis [68.5287824124996]
そこで本研究では,新しいタイプの識別器であるセグメンタを提案し,病変の正確な特定と擬似健康画像の視覚的品質の向上を図っている。
医用画像強調に生成画像を適用し,低コントラスト問題に対処するために拡張結果を利用する。
BraTSのT2モダリティに関する総合的な実験により、提案手法は最先端の手法よりも大幅に優れていることが示された。
論文 参考訳(メタデータ) (2022-03-29T08:41:17Z) - Medical Transformer: Gated Axial-Attention for Medical Image
Segmentation [73.98974074534497]
医用画像分割タスクにおけるトランスフォーマティブネットワークアーキテクチャの利用可能性について検討する。
セルフアテンションモジュールに追加の制御機構を導入することで,既存のアーキテクチャを拡張するGated Axial-Attentionモデルを提案する。
医療画像上で効果的にモデルを訓練するために,さらにパフォーマンスを向上させる局所的グローバルトレーニング戦略 (logo) を提案する。
論文 参考訳(メタデータ) (2021-02-21T18:35:14Z) - Generative Adversarial U-Net for Domain-free Medical Image Augmentation [49.72048151146307]
注釈付き医用画像の不足は、医用画像コンピューティングの分野における最大の課題の1つだ。
本稿では,生成逆U-Netという新しい生成手法を提案する。
当社の新しいモデルは、ドメインフリーで、さまざまな医療画像に汎用性があります。
論文 参考訳(メタデータ) (2021-01-12T23:02:26Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
本稿では,幾何学と形状の内在的関係を共同で符号化することで,従来のGANベースの医用画像合成法よりも優れた手法を提案する。
提案手法は,取得手順の異なる画像を有する公開RETOUCHデータセット上で,最先端のセグメンテーション手法より優れている。
論文 参考訳(メタデータ) (2020-03-31T11:50:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。