論文の概要: Evolution of Information in Interactive Decision Making: A Case Study for Multi-Armed Bandits
- arxiv url: http://arxiv.org/abs/2503.00273v1
- Date: Sat, 01 Mar 2025 01:01:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:22:01.733156
- Title: Evolution of Information in Interactive Decision Making: A Case Study for Multi-Armed Bandits
- Title(参考訳): 対話的意思決定における情報の進化:マルチアーマッド・バンドを事例として
- Authors: Yuzhou Gu, Yanjun Han, Jian Qian,
- Abstract要約: マルチアームバンディット問題のレンズによる対話型意思決定における情報の進化について検討する。
最適な成功確率と相互情報の分離が可能であり、最適学習を達成するためには、必ずしも情報の獲得を最大化する必要がなくなる。
- 参考スコア(独自算出の注目度): 16.584981298202223
- License:
- Abstract: We study the evolution of information in interactive decision making through the lens of a stochastic multi-armed bandit problem. Focusing on a fundamental example where a unique optimal arm outperforms the rest by a fixed margin, we characterize the optimal success probability and mutual information over time. Our findings reveal distinct growth phases in mutual information -- initially linear, transitioning to quadratic, and finally returning to linear -- highlighting curious behavioral differences between interactive and non-interactive environments. In particular, we show that optimal success probability and mutual information can be decoupled, where achieving optimal learning does not necessarily require maximizing information gain. These findings shed new light on the intricate interplay between information and learning in interactive decision making.
- Abstract(参考訳): 確率的マルチアームバンディット問題のレンズによる対話的意思決定における情報の進化について検討する。
本稿では,一意の最適アームが残りを一定のマージンで上回り,最適成功確率と時間的相互情報を特徴付ける基本例に着目した。
我々の発見は、相互情報の異なる成長段階(最初は線形、最後は二次に移行し、最後は線形に戻る)を明らかにし、対話的環境と非対話的環境の奇妙な振る舞いの違いを浮き彫りにしている。
特に、最適な成功確率と相互情報の分離が可能であり、最適学習を達成するためには、必ずしも情報の獲得を最大化する必要がなくなる。
これらの知見は、インタラクティブな意思決定における情報と学習の複雑な相互作用に新たな光を当てた。
関連論文リスト
- InterFormer: Towards Effective Heterogeneous Interaction Learning for Click-Through Rate Prediction [72.50606292994341]
我々はインターリービング方式で異種情報インタラクションを学習するInterFormerという新しいモジュールを提案する。
提案するInterFormerは,3つのパブリックデータセットと大規模産業データセットに対して,最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2024-11-15T00:20:36Z) - Multimodal Fusion with LLMs for Engagement Prediction in Natural Conversation [70.52558242336988]
我々は,不関心や混乱の兆候を検出することを目的として,言語的および非言語的手がかりを精査することにより,ダイアディック的相互作用における係り合いを予測することに焦点を当てた。
本研究では,カジュアルなダイアディック会話に携わる34人の参加者を対象に,各会話の最後に自己報告されたエンゲージメント評価を行うデータセットを収集する。
大規模言語モデル(LLMs)を用いた新たな融合戦略を導入し,複数行動モダリティをマルチモーダル・トランスクリプトに統合する。
論文 参考訳(メタデータ) (2024-09-13T18:28:12Z) - Generative Intrinsic Optimization: Intrinsic Control with Model Learning [5.439020425819001]
将来のシーケンスは、環境へのアクションの実行後の結果を表す。
明示的な成果は、クレジットの割り当てや模倣学習などの異なる目的のために、州、返却、軌跡によって異なりうる。
本稿では、相互情報をシームレスに組み込んだ政策スキームを提案し、最適な政策への収束を確保する。
論文 参考訳(メタデータ) (2023-10-12T07:50:37Z) - Learning Unseen Modality Interaction [54.23533023883659]
マルチモーダル学習は、すべてのモダリティの組み合わせが訓練中に利用でき、クロスモーダル対応を学ぶことを前提としている。
我々は、目に見えないモダリティ相互作用の問題を提起し、第1の解を導入する。
異なるモジュラリティの多次元的特徴を、豊富な情報を保存した共通空間に投影するモジュールを利用する。
論文 参考訳(メタデータ) (2023-06-22T10:53:10Z) - Mutual Information Estimation via $f$-Divergence and Data Derangements [6.43826005042477]
本稿では,$f$-divergenceの変動表現に基づく,新たな識別情報推定手法を提案する。
提案した推定器は、優れたバイアス/分散トレードオフを示すため、柔軟である。
論文 参考訳(メタデータ) (2023-05-31T16:54:25Z) - Selective Inference for Sparse Multitask Regression with Applications in
Neuroimaging [2.611153304251067]
本稿では、ニューロイメージングにおける一般的なマルチタスク問題に対処するための選択推論フレームワークを提案する。
我々のフレームワークは、選択イベントの洗練に基づいて、新しい推論条件を提供する。
我々は,選択推論を用いたマルチタスク学習により,単一タスク法よりも真の信号をより正確に復元できることをシミュレーションにより示す。
論文 参考訳(メタデータ) (2022-05-27T20:21:20Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
本稿では,データ生成プロセスの根底にある因果構造を素早く識別する能動的介入ターゲット機構を提案する。
本手法は,ランダムな介入ターゲティングと比較して,要求される対話回数を大幅に削減する。
シミュレーションデータから実世界のデータまで,複数のベンチマークにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2021-09-06T13:10:37Z) - Adversarial Mutual Information for Text Generation [62.974883143784616]
本稿では,テキスト生成フレームワーク(AMI:Adversarial Mutual Information)を提案する。
AMIは、ソースとターゲット間の共同相互作用を特定することを目的とした、新しいサドル点(min-max)最適化として形成される。
AMIは、最大相互情報のより狭い範囲に導かれる可能性があることを示す。
論文 参考訳(メタデータ) (2020-06-30T19:11:51Z) - Mutual Information Maximization for Effective Lip Reading [99.11600901751673]
本稿では,局所的特徴レベルとグローバルなシーケンスレベルの両方について,相互情報制約を導入することを提案する。
これら2つの利点を組み合わせることで, 有効な唇読解法として, 識別性と頑健性の両方が期待できる。
論文 参考訳(メタデータ) (2020-03-13T18:47:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。