論文の概要: More of the Same: Persistent Representational Harms Under Increased Representation
- arxiv url: http://arxiv.org/abs/2503.00333v1
- Date: Sat, 01 Mar 2025 03:45:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:25:24.282428
- Title: More of the Same: Persistent Representational Harms Under Increased Representation
- Title(参考訳): 表現の増大による持続的表現のハームの増大
- Authors: Jennifer Mickel, Maria De-Arteaga, Leqi Liu, Kevin Tian,
- Abstract要約: モデルがバイオグラフィーやペルソナを生成するように促された場合,女性は男性よりも表現力が高いことを示す。
この結果、表現的害、ステレオタイプ、新自由主義の理想が拡大する。
- 参考スコア(独自算出の注目度): 10.675712374796356
- License:
- Abstract: To recognize and mitigate the harms of generative AI systems, it is crucial to consider who is represented in the outputs of generative AI systems and how people are represented. A critical gap emerges when naively improving who is represented, as this does not imply bias mitigation efforts have been applied to address how people are represented. We critically examined this by investigating gender representation in occupation across state-of-the-art large language models. We first show evidence suggesting that over time there have been interventions to models altering the resulting gender distribution, and we find that women are more represented than men when models are prompted to generate biographies or personas. We then demonstrate that representational biases persist in how different genders are represented by examining statistically significant word differences across genders. This results in a proliferation of representational harms, stereotypes, and neoliberalism ideals that, despite existing interventions to increase female representation, reinforce existing systems of oppression.
- Abstract(参考訳): 生成AIシステムの害を認識し軽減するためには、誰が生成AIシステムの出力で表現されているか、どのように表現されているかを考えることが不可欠である。
これは、人々がどのように表現されるかに対処するためにバイアス軽減の努力が適用されていることを暗示していないためである。
我々は、最先端の大規模言語モデルにまたがる職業におけるジェンダー表現を調査し、これを批判的に検証した。
まず、結果の性別分布を変えるモデルに対する介入があったことを示す証拠を示し、モデルが伝記やペルソナを生成するように促された場合、女性は男性よりも表現力が高いことを発見した。
次に、表現バイアスは、性別間の統計的に有意な単語差を調べることによって、性別の違いがどのように表現されるかを示す。
この結果、表現障害、ステレオタイプ、新自由主義の拡散は、女性の表現力を高めるための既存の介入にもかかわらず、既存の抑圧システムを強化するという理想を定めている。
関連論文リスト
- Gender Bias in Instruction-Guided Speech Synthesis Models [55.2480439325792]
本研究では、モデルが職業関連プロンプトをどのように解釈するかにおける潜在的な性別バイアスについて検討する。
このようなプロンプトを解釈する際に、これらのモデルがジェンダーステレオタイプを増幅する傾向を示すかどうかを検討する。
実験の結果, ある職業において, 性別偏見を示す傾向が示された。
論文 参考訳(メタデータ) (2025-02-08T17:38:24Z) - Evaluating Gender Bias in Large Language Models [0.8636148452563583]
本研究では,大規模言語モデル (LLMs) が職業文脈における代名詞選択における性別バイアスの程度について検討した。
対象とする職業は、男性に有意な存在感を持つものから女性に有意な集中力を持つものまで幅広い。
その結果, モデルの代名詞選択と, 労働力データに存在する性別分布との間には, 正の相関関係が認められた。
論文 参考訳(メタデータ) (2024-11-14T22:23:13Z) - Generalizing Fairness to Generative Language Models via Reformulation of Non-discrimination Criteria [4.738231680800414]
本稿では、生成言語モデルにおけるジェンダーバイアスの存在を解明し、定量化する方法について研究する。
我々は、独立性、分離性、充足性という3つのよく知られた非識別基準のジェネレーティブAIアナログを導出する。
本研究は,このような対話型言語モデルにおける職業性バイアスの存在に対処するものである。
論文 参考訳(メタデータ) (2024-03-13T14:19:08Z) - The Male CEO and the Female Assistant: Evaluation and Mitigation of Gender Biases in Text-To-Image Generation of Dual Subjects [58.27353205269664]
本稿では,Paired Stereotype Test (PST) フレームワークを提案する。
PSTクエリT2Iモデルは、男性ステレオタイプと女性ステレオタイプに割り当てられた2つの個人を描写する。
PSTを用いて、ジェンダーバイアスの2つの側面、つまり、ジェンダーの職業におけるよく知られたバイアスと、組織力におけるバイアスという新しい側面を評価する。
論文 参考訳(メタデータ) (2024-02-16T21:32:27Z) - Stable Diffusion Exposed: Gender Bias from Prompt to Image [25.702257177921048]
本稿では,安定拡散画像における生成過程の各ステップにおける性別指標の影響を解析する評価プロトコルを提案する。
以上の結果から,特定の性別に合わせて調整された楽器や,全体のレイアウトの変化など,物体の描写の違いの存在が示唆された。
論文 参考訳(メタデータ) (2023-12-05T10:12:59Z) - VisoGender: A dataset for benchmarking gender bias in image-text pronoun
resolution [80.57383975987676]
VisoGenderは、視覚言語モデルで性別バイアスをベンチマークするための新しいデータセットである。
We focus to occupation-related biases in a hegemonic system of binary gender, inspired by Winograd and Winogender schemas。
我々は、最先端の視覚言語モデルをいくつかベンチマークし、それらが複雑な場面における二項性解消のバイアスを示すことを発見した。
論文 参考訳(メタデータ) (2023-06-21T17:59:51Z) - Stereotypes and Smut: The (Mis)representation of Non-cisgender
Identities by Text-to-Image Models [6.92043136971035]
マルチモーダルモデルが男女同一性をどのように扱うかを検討する。
特定の非シスジェンダーのアイデンティティは、人間より少なく、ステレオタイプで、性的にも、一貫して(ミス)表現されている。
これらの改善は、影響のあるコミュニティによって変革が導かれる未来への道を開く可能性がある。
論文 参考訳(メタデータ) (2023-05-26T16:28:49Z) - Fairness in AI Systems: Mitigating gender bias from language-vision
models [0.913755431537592]
既存のデータセットにおける性別バイアスの影響について検討する。
本稿では,キャプションに基づく言語視覚モデルにおけるその影響を緩和する手法を提案する。
論文 参考訳(メタデータ) (2023-05-03T04:33:44Z) - Stable Bias: Analyzing Societal Representations in Diffusion Models [72.27121528451528]
本稿では,テキスト・ツー・イメージ(TTI)システムにおける社会的バイアスを探索する新しい手法を提案する。
我々のアプローチは、プロンプト内の性別や民族のマーカーを列挙して生成された画像の変動を特徴づけることに依存している。
我々はこの手法を利用して3つのTTIシステムによって生成された画像を分析し、そのアウトプットが米国の労働人口層と相関しているのに対して、彼らは常に異なる範囲において、限界化されたアイデンティティを低く表現している。
論文 参考訳(メタデータ) (2023-03-20T19:32:49Z) - Easily Accessible Text-to-Image Generation Amplifies Demographic
Stereotypes at Large Scale [61.555788332182395]
危険で複雑なステレオタイプを増幅する機械学習モデルの可能性を検討する。
さまざまな通常のプロンプトがステレオタイプを生成しており、それらは単に特性、記述子、職業、オブジェクトに言及するプロンプトを含む。
論文 参考訳(メタデータ) (2022-11-07T18:31:07Z) - Are Commercial Face Detection Models as Biased as Academic Models? [64.71318433419636]
我々は学術的および商業的な顔検出システムを比較し、特にノイズに対する堅牢性について検討する。
現状の学術的顔検出モデルでは、ノイズの頑健性に人口格差があることがわかった。
私たちは、商用モデルは、常に学術モデルと同じくらいの偏り、あるいはより偏りがある、と結論付けます。
論文 参考訳(メタデータ) (2022-01-25T02:21:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。