論文の概要: Structured Reasoning for Fairness: A Multi-Agent Approach to Bias Detection in Textual Data
- arxiv url: http://arxiv.org/abs/2503.00355v1
- Date: Sat, 01 Mar 2025 05:27:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:25:23.875753
- Title: Structured Reasoning for Fairness: A Multi-Agent Approach to Bias Detection in Textual Data
- Title(参考訳): フェアネスのための構造化推論:テキストデータにおけるバイアス検出のためのマルチエージェントアプローチ
- Authors: Tianyi Huang, Elsa Fan,
- Abstract要約: 本稿では,各文を事実あるいは意見として切り離して識別するマルチエージェントフレームワークを提案する。
改良された検出精度と解釈可能な説明を組み合わせることで、現代の言語モデルにおける説明責任を促進する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: From disinformation spread by AI chatbots to AI recommendations that inadvertently reinforce stereotypes, textual bias poses a significant challenge to the trustworthiness of large language models (LLMs). In this paper, we propose a multi-agent framework that systematically identifies biases by disentangling each statement as fact or opinion, assigning a bias intensity score, and providing concise, factual justifications. Evaluated on 1,500 samples from the WikiNPOV dataset, the framework achieves 84.9% accuracy$\unicode{x2014}$an improvement of 13.0% over the zero-shot baseline$\unicode{x2014}$demonstrating the efficacy of explicitly modeling fact versus opinion prior to quantifying bias intensity. By combining enhanced detection accuracy with interpretable explanations, this approach sets a foundation for promoting fairness and accountability in modern language models.
- Abstract(参考訳): AIチャットボットが広める偽情報から、必然的にステレオタイプを補強するAIレコメンデーションまで、テキストバイアスは、大規模言語モデル(LLM)の信頼性に重大な課題をもたらす。
本稿では,各文を事実あるいは意見として切り離し,バイアス強度スコアを割り当て,簡潔かつ事実的正当化を提供することにより,バイアスを体系的に同定するマルチエージェントフレームワークを提案する。
WikiNPOVデータセットから1,500サンプルを評価したところ、このフレームワークは84.9%精度$\unicode{x2014}$13.0%の改善をゼロショットベースライン$\unicode{x2014}$demonating the effective of explicit modeling fact vs opinion before Quantification bias intensity。
検出精度の向上と解釈可能な説明を組み合わせることで、現代の言語モデルにおける公正性と説明責任の促進の基礎となる。
関連論文リスト
- STOP! Benchmarking Large Language Models with Sensitivity Testing on Offensive Progressions [6.19084217044276]
大規模言語モデル(LLM)における明示的バイアスと暗黙的バイアスの緩和は、自然言語処理の分野において重要な焦点となっている。
我々は,2700のユニークな文を含む450の攻撃的進行を含む,攻撃的進行に関する感性テストデータセットを紹介した。
以上の結果から,最も優れたモデルでさえバイアスを不整合に検出し,成功率は19.3%から69.8%であった。
論文 参考訳(メタデータ) (2024-09-20T18:34:38Z) - NBIAS: A Natural Language Processing Framework for Bias Identification
in Text [9.486702261615166]
テキストデータのバイアスは、データが使用されると歪んだ解釈や結果につながる可能性がある。
偏りのあるデータに基づいて訓練されたアルゴリズムは、あるグループに不公平に影響を及ぼす決定を下すかもしれない。
我々は,データ,コーパス構築,モデル開発,評価レイヤの4つの主要レイヤからなる包括的フレームワーク NBIAS を開発した。
論文 参考訳(メタデータ) (2023-08-03T10:48:30Z) - Interpretable Automatic Fine-grained Inconsistency Detection in Text
Summarization [56.94741578760294]
本研究の目的は, 要約中の事実誤りの微粒化を予測し, 微粒化不整合検出の課題を提案することである。
要約における現実的不整合の検査方法に触発され,解析可能な微粒不整合検出モデルであるFinGrainFactを提案する。
論文 参考訳(メタデータ) (2023-05-23T22:11:47Z) - Preserving Knowledge Invariance: Rethinking Robustness Evaluation of Open Information Extraction [49.15931834209624]
実世界におけるオープン情報抽出モデルの評価をシミュレートする最初のベンチマークを示す。
我々は、それぞれの例が知識不変のcliqueである大規模なテストベッドを設計し、注釈付けする。
さらにロバスト性計量を解明することにより、その性能が全体の傾きに対して一貫して正確であるならば、モデルはロバストであると判断される。
論文 参考訳(メタデータ) (2023-05-23T12:05:09Z) - POUF: Prompt-oriented unsupervised fine-tuning for large pre-trained
models [62.23255433487586]
モデルに微調整を施したり、ラベルのないターゲットデータにプロンプトを施したりするための教師なしの微調整フレームワークを提案する。
本稿では,プロンプトとターゲットデータから抽出した離散分布を整列させて,言語拡張視覚とマスキング言語モデルの両方に適用する方法を示す。
論文 参考訳(メタデータ) (2023-04-29T22:05:22Z) - CB-Conformer: Contextual biasing Conformer for biased word recognition [33.28780163232423]
本稿では,Vanilla ConformerにContextual Biasing ModuleとSelf-Adaptive Language Modelを導入する。
提案手法は,文字誤り率を15.34%削減し,14.13%の単語リコール,6.80%の単語F1スコアアップを実現した。
論文 参考訳(メタデータ) (2023-04-19T12:26:04Z) - Retrieval-based Disentangled Representation Learning with Natural
Language Supervision [61.75109410513864]
本稿では,VDR(Vocabulary Disentangled Retrieval)を提案する。
提案手法では,両エンコーダモデルを用いて語彙空間におけるデータと自然言語の両方を表現する。
論文 参考訳(メタデータ) (2022-12-15T10:20:42Z) - Few-shot Instruction Prompts for Pretrained Language Models to Detect
Social Biases [55.45617404586874]
我々は、事前訓練された言語モデル(LM)を誘導する数ショットの命令ベース手法を提案する。
大規模なLMは、微調整モデルとよく似た精度で、異なる種類の細粒度バイアスを検出できることを示す。
論文 参考訳(メタデータ) (2021-12-15T04:19:52Z) - Transformer-based Language Model Fine-tuning Methods for COVID-19 Fake
News Detection [7.29381091750894]
偽ニュース検出のためのトランスフォーマーに基づく言語モデルの微調整手法を提案する。
まず、個々のモデルのトークン語彙を専門用語の実際の意味論のために拡張する。
最後に、普遍言語モデルRoBERTaとドメイン固有モデルCT-BERTによって抽出された予測特徴を、複数の層認識によって融合させ、微細で高レベルな特定の表現を統合する。
論文 参考訳(メタデータ) (2021-01-14T09:05:42Z) - Improving Robustness by Augmenting Training Sentences with
Predicate-Argument Structures [62.562760228942054]
データセットバイアスに対するロバスト性を改善する既存のアプローチは、主にトレーニング目標の変更に焦点を当てている。
本稿では,学習データ中の入力文に対応する述語句構造を付加することを提案する。
特定のバイアスを対象とせずに、文の増大は、複数のバイアスに対してトランスフォーマーモデルの堅牢性を向上することを示す。
論文 参考訳(メタデータ) (2020-10-23T16:22:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。