論文の概要: Reservoir Network with Structural Plasticity for Human Activity Recognition
- arxiv url: http://arxiv.org/abs/2503.00393v1
- Date: Sat, 01 Mar 2025 07:57:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:23:11.034254
- Title: Reservoir Network with Structural Plasticity for Human Activity Recognition
- Title(参考訳): 人間活動認識のための構造塑性を有する貯留層ネットワーク
- Authors: Abdullah M. Zyarah, Alaa M. Abdul-Hadi, Dhireesha Kudithipudi,
- Abstract要約: Echo State Network(ESN)は、時系列データのユニークなパターンを特定し、将来のイベントを予測するために使用できる、リカレントニューラルネットワークのクラスである。
本研究では,ESNターゲットエッジデバイスに基づくカスタム設計ニューロモルフィックチップを提案する。
提案システムは, 構造的可塑性, シナプス的可塑性, 局所的オンチップなど, 様々な学習メカニズムをサポートする。
- 参考スコア(独自算出の注目度): 2.355460994057843
- License:
- Abstract: The unprecedented dissemination of edge devices is accompanied by a growing demand for neuromorphic chips that can process time-series data natively without cloud support. Echo state network (ESN) is a class of recurrent neural networks that can be used to identify unique patterns in time-series data and predict future events. It is known for minimal computing resource requirements and fast training, owing to the use of linear optimization solely at the readout stage. In this work, a custom-design neuromorphic chip based on ESN targeting edge devices is proposed. The proposed system supports various learning mechanisms, including structural plasticity and synaptic plasticity, locally on-chip. This provides the network with an additional degree of freedom to continuously learn, adapt, and alter its structure and sparsity level, ensuring high performance and continuous stability. We demonstrate the performance of the proposed system as well as its robustness to noise against real-world time-series datasets while considering various topologies of data movement. An average accuracy of 95.95% and 85.24% are achieved on human activity recognition and prosthetic finger control, respectively. We also illustrate that the proposed system offers a throughput of 6x10^4 samples/sec with a power consumption of 47.7mW on a 65nm IBM process.
- Abstract(参考訳): エッジデバイスの前例のない普及は、クラウドサポートなしで時系列データをネイティブに処理できるニューロモルフィックチップの需要の増加に伴うものだ。
Echo State Network(ESN)は、時系列データのユニークなパターンを特定し、将来のイベントを予測するために使用できる、リカレントニューラルネットワークのクラスである。
最小限のコンピューティングリソース要件と高速なトレーニングで知られており、リードアウト段階でのみ線形最適化を使用するためである。
本研究では,ESNターゲットエッジデバイスに基づくカスタム設計ニューロモルフィックチップを提案する。
提案システムは, 構造的可塑性, シナプス的可塑性, 局所的オンチップなど, 様々な学習メカニズムをサポートする。
これにより、ネットワークは、継続的に学習し、適応し、その構造と空間レベルを変更し、高いパフォーマンスと継続的な安定性を保証するための、さらなる自由度を提供する。
データ移動の様々なトポロジを考慮しつつ,提案システムの性能と実世界の時系列データセットに対するノイズに対する頑健さを実証する。
95.95%と85.24%の平均精度は、それぞれ人間の活動認識と補綴指制御において達成される。
また,提案システムでは,65nmのIBMプロセス上で6x10^4サンプル/秒のスループットと47.7mWの消費電力を提供する。
関連論文リスト
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
タスク指向エッジコンピューティングは、データ分析をエッジにシフトすることで、この問題に対処する。
既存の手法は、高いモデル性能と低いリソース消費のバランスをとるのに苦労している。
ニューラルネットワークアーキテクチャを最適化する新しい協調設計フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-29T19:02:54Z) - Hyperdimensional Computing Empowered Federated Foundation Model over Wireless Networks for Metaverse [56.384390765357004]
本稿では,新しい基礎モデルのための統合型分割学習と超次元計算フレームワークを提案する。
この新しいアプローチは通信コスト、計算負荷、プライバシーリスクを低減し、Metaverseのリソース制約されたエッジデバイスに適している。
論文 参考訳(メタデータ) (2024-08-26T17:03:14Z) - Improving the Real-Data Driven Network Evaluation Model for Digital Twin Networks [0.2499907423888049]
デジタルツインネットワーク(DTN)技術は,自律型ネットワークの基礎技術として期待されている。
DTNは、クローズドループシステムにおいて、リアルタイムに収集されたデータに基づいてネットワークを運用およびシステム化できるという利点がある。
DTNの使用を最適化するために、さまざまなAI研究と標準化作業が進行中である。
論文 参考訳(メタデータ) (2024-05-14T09:55:03Z) - Active Dendrites Enable Efficient Continual Learning in Time-To-First-Spike Neural Networks [1.7333836118546833]
活性デンドライトで強化された新しいスパイキングニューラルネットワークモデルを提案する。
我々のモデルは、時間的に符号化されたSNNにおいて破滅的な忘れを効果的に軽減することができる。
エッジデバイスにおける現実的なデプロイメントを実現するための,新たなディジタルハードウェアアーキテクチャを提供する。
論文 参考訳(メタデータ) (2024-04-30T10:11:03Z) - DYNAP-SE2: a scalable multi-core dynamic neuromorphic asynchronous
spiking neural network processor [2.9175555050594975]
我々は、リアルタイムイベントベーススパイキングニューラルネットワーク(SNN)をプロトタイピングするための、脳にインスパイアされたプラットフォームを提案する。
提案システムは, 短期可塑性, NMDA ゲーティング, AMPA拡散, ホメオスタシス, スパイク周波数適応, コンダクタンス系デンドライトコンパートメント, スパイク伝達遅延などの動的および現実的なニューラル処理現象の直接エミュレーションを支援する。
異なる生物学的に可塑性のニューラルネットワークをエミュレートする柔軟性と、個体群と単一ニューロンの信号の両方をリアルタイムで監視する能力により、基礎研究とエッジコンピューティングの両方への応用のための複雑なニューラルネットワークモデルの開発と検証が可能になる。
論文 参考訳(メタデータ) (2023-10-01T03:48:16Z) - Fluid Batching: Exit-Aware Preemptive Serving of Early-Exit Neural
Networks on Edge NPUs [74.83613252825754]
スマートエコシステム(smart ecosystems)"は、スタンドアロンではなく、センセーションが同時に行われるように形成されています。
これはデバイス上の推論パラダイムを、エッジにニューラル処理ユニット(NPU)をデプロイする方向にシフトしている。
そこで本研究では,実行時のプリエンプションが到着・終了プロセスによってもたらされる動的性を考慮に入れた,新しい早期終了スケジューリングを提案する。
論文 参考訳(メタデータ) (2022-09-27T15:04:01Z) - Braille Letter Reading: A Benchmark for Spatio-Temporal Pattern
Recognition on Neuromorphic Hardware [50.380319968947035]
近年の深層学習手法は,そのようなタスクにおいて精度が向上しているが,従来の組込みソリューションへの実装は依然として計算量が非常に高く,エネルギーコストも高い。
文字読み込みによるエッジにおける触覚パターン認識のための新しいベンチマークを提案する。
フィードフォワードとリカレントスパイキングニューラルネットワーク(SNN)を、サロゲート勾配の時間によるバックプロパゲーションを用いてオフラインでトレーニングし比較し、効率的な推論のためにIntel Loihimorphicチップにデプロイした。
LSTMは14%の精度で繰り返しSNNより優れており、Loihi上での繰り返しSNNは237倍のエネルギーである。
論文 参考訳(メタデータ) (2022-05-30T14:30:45Z) - Continual Spatio-Temporal Graph Convolutional Networks [87.86552250152872]
時空間グラフ畳み込みニューラルネットワークを連続推論ネットワークとして再構成する。
オンライン推論において、最大109倍の時間複雑性、26倍のハードウェアアクセラレーション、最大割り当てメモリの最大52%の削減を観測した。
論文 参考訳(メタデータ) (2022-03-21T14:23:18Z) - FPGA-optimized Hardware acceleration for Spiking Neural Networks [69.49429223251178]
本研究は,画像認識タスクに適用したオフライントレーニングによるSNN用ハードウェアアクセラレータの開発について述べる。
この設計はXilinx Artix-7 FPGAをターゲットにしており、利用可能なハードウェアリソースの40%を合計で使用している。
分類時間を3桁に短縮し、ソフトウェアと比較すると精度にわずか4.5%の影響を与えている。
論文 参考訳(メタデータ) (2022-01-18T13:59:22Z) - perf4sight: A toolflow to model CNN training performance on Edge GPUs [16.61258138725983]
この研究は、CNNのトレーニングメモリフットプリントとレイテンシを予測する正確なモデルを開発するための自動化手法であるperf4sightを提案する。
フレームワークはPyTorch、ターゲットデバイスはNVIDIA Jetson TX2、それぞれ95%と91%の精度でトレーニングメモリフットプリントとレイテンシを予測する。
論文 参考訳(メタデータ) (2021-08-12T07:55:37Z) - Unsupervised Clustering of Time Series Signals using Neuromorphic
Energy-Efficient Temporal Neural Networks [1.2928408516950525]
監視されていない時系列クラスタリングは、多様な産業用途で困難な問題です。
時間的ニューラルネットワークに基づく非監視時系列クラスタリングに対するニューロモーフィックアプローチを提案する。
論文 参考訳(メタデータ) (2021-02-18T07:47:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。