論文の概要: Asynchronous Personalized Federated Learning through Global Memorization
- arxiv url: http://arxiv.org/abs/2503.00407v1
- Date: Sat, 01 Mar 2025 09:00:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:14:28.203031
- Title: Asynchronous Personalized Federated Learning through Global Memorization
- Title(参考訳): グローバル記憶による非同期個人化フェデレーション学習
- Authors: Fan Wan, Yuchen Li, Xueqi Qiu, Rui Sun, Leyuan Zhang, Xingyu Miao, Tianyu Zhang, Haoran Duan, Yang Long,
- Abstract要約: Federated Learningは、機密データを集中化せずに、分散デバイス間で協調的なモデルトレーニングを可能にすることにより、プライバシ保護ソリューションを提供する。
サーバ側セマンティックジェネレータを用いて、クライアントがパーソナライズされたモデルを開発することを可能にする非同期パーソナライズドフェデレーション学習フレームワークを提案する。
このジェネレータは、グローバルモデル監視の下でデータ自由な知識伝達によって訓練され、見知らぬサンプルと見えないサンプルの両方を生成することにより、クライアントデータの多様性を高める。
総合データ障害訓練のリスクに対処するため, 頑健なパーソナライゼーションを確保するために, 疎結合モデルを導入する。
- 参考スコア(独自算出の注目度): 16.630360485032163
- License:
- Abstract: The proliferation of Internet of Things devices and advances in communication technology have unleashed an explosion of personal data, amplifying privacy concerns amid stringent regulations like GDPR and CCPA. Federated Learning offers a privacy preserving solution by enabling collaborative model training across decentralized devices without centralizing sensitive data. However, statistical heterogeneity from non-independent and identically distributed datasets and system heterogeneity due to client dropouts particularly those with monopolistic classes severely degrade the global model's performance. To address these challenges, we propose the Asynchronous Personalized Federated Learning framework, which empowers clients to develop personalized models using a server side semantic generator. This generator, trained via data free knowledge transfer under global model supervision, enhances client data diversity by producing both seen and unseen samples, the latter enabled by Zero-Shot Learning to mitigate dropout-induced data loss. To counter the risks of synthetic data impairing training, we introduce a decoupled model interpolation method, ensuring robust personalization. Extensive experiments demonstrate that AP FL significantly outperforms state of the art FL methods in tackling non-IID distributions and client dropouts, achieving superior accuracy and resilience across diverse real-world scenarios.
- Abstract(参考訳): モノのインターネット(Internet of Things, IoT)デバイスの普及と通信技術の進歩は、個人データの爆発を招き、GDPRやCCPAなどの厳格な規制によってプライバシーの懸念が高まる。
Federated Learningは、機密データを集中化せずに、分散デバイス間で協調的なモデルトレーニングを可能にすることにより、プライバシ保護ソリューションを提供する。
しかしながら、非独立で同一に分散したデータセットからの統計的不均一性と、クライアントのドロップアウトによるシステム不均一性、特にモノポリティクスクラスを持つ者は、グローバルモデルの性能を著しく低下させる。
これらの課題に対処するため,サーバ側セマンティックジェネレータを用いて,クライアントがパーソナライズされたモデルを開発することを可能にする非同期パーソナライズドフェデレーション学習フレームワークを提案する。
このジェネレータは、グローバルモデル監視下でデータ自由な知識伝達によってトレーニングされ、目に見えないサンプルと見えないサンプルの両方を生成し、クライアントデータの多様性を高める。
合成データ障害訓練のリスクに対処するため,分離モデル補間法を導入し,ロバストなパーソナライゼーションを実現する。
大規模な実験により、AP FLは、非IID分布やクライアントのドロップアウトに対処する上で、最先端のFL法を著しく上回り、様々な実世界のシナリオにおいて優れた精度とレジリエンスを実現している。
関連論文リスト
- FedDUAL: A Dual-Strategy with Adaptive Loss and Dynamic Aggregation for Mitigating Data Heterogeneity in Federated Learning [12.307490659840845]
フェデレートラーニング(FL)は、様々なクライアントからローカルに最適化されたモデルと、統一されたグローバルモデルを組み合わせる。
FLは、性能劣化、収束の遅さ、グローバルモデルの堅牢性低下など、重大な課題に直面している。
これらの問題を効果的に解決するために、革新的なデュアルストラテジーアプローチを導入する。
論文 参考訳(メタデータ) (2024-12-05T18:42:29Z) - Adversarial Federated Consensus Learning for Surface Defect Classification Under Data Heterogeneity in IIoT [8.48069043458347]
産業用IoT(Industrial Internet of Things)における各種エンティティからの十分なトレーニングデータの収集と集中化は難しい。
フェデレートラーニング(FL)は、クライアント間で協調的なグローバルモデルトレーニングを可能にするソリューションを提供する。
我々は,Adversarial Federated Consensus Learning (AFedCL) という新しいFLアプローチを提案する。
論文 参考訳(メタデータ) (2024-09-24T03:59:32Z) - Stable Diffusion-based Data Augmentation for Federated Learning with Non-IID Data [9.045647166114916]
フェデレートラーニング(FL)は、分散的かつ協調的なモデルトレーニングのための有望なパラダイムである。
FLは、非独立分散(Non-IID)データ分散に直面すると、パフォーマンスの大幅な低下と収束性の低下に悩まされる。
我々は、最先端のテキスト・ツー・イメージ基盤モデルの強力な能力を活用する新しいアプローチであるGen-FedSDを紹介する。
論文 参考訳(メタデータ) (2024-05-13T16:57:48Z) - An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
フェデレートラーニング(FL)は、分散データセットからの知識を活用する効果に頼っている。
従来のFLメソッドでは、クライアントが前回のトレーニングラウンドからサーバが集約したグローバルモデルに基づいてローカルモデルを更新するアグリゲート-then-adaptフレームワークを採用している。
我々は,新しいアグリゲーションフリーFLアルゴリズムであるFedAFを紹介する。
論文 参考訳(メタデータ) (2024-04-29T05:55:23Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
フェデレーション学習は、ローカルデータを共有せずに、分散クライアントから機械学習モデルの共同トレーニングを可能にする。
連合学習における重要な課題の1つは、クライアントにまたがる識別できない分散データを扱うことである。
本稿では,データ問題に対処するための予測軌道正則化(FedPTR)を備えた新しいフェデレーション学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-22T02:12:08Z) - Fed-QSSL: A Framework for Personalized Federated Learning under Bitwidth
and Data Heterogeneity [14.313847382199059]
Fed-QSSL (Federated Quantization-based self-supervised learning scheme) はFLシステムの不均一性に対処するために設計された。
Fed-QSSLは、デ量子化、重み付けされたアグリゲーション、再量子化をデプロイし、最終的に、各クライアントのデバイスのデータ分散と特定のインフラストラクチャの両方にパーソナライズされたモデルを作成する。
論文 参考訳(メタデータ) (2023-12-20T19:11:19Z) - One-Shot Federated Learning with Classifier-Guided Diffusion Models [44.604485649167216]
ワンショット・フェデレーション・ラーニング (OSFL) は, 通信コストの低さから近年注目されている。
本稿では,OSFLに拡散モデルがもたらす新たな機会を探求し,FedCADOを提案する。
FedCADOはクライアントのディストリビューションに準拠したデータを生成し、その後、サーバ上で集約されたモデルをトレーニングします。
論文 参考訳(メタデータ) (2023-11-15T11:11:25Z) - FedDM: Iterative Distribution Matching for Communication-Efficient
Federated Learning [87.08902493524556]
フェデレートラーニング(FL)は近年、学術や産業から注目を集めている。
我々は,複数の局所的代理関数からグローバルなトレーニング目標を構築するためのFedDMを提案する。
そこで本研究では,各クライアントにデータ集合を構築し,元のデータから得られた損失景観を局所的にマッチングする。
論文 参考訳(メタデータ) (2022-07-20T04:55:18Z) - Straggler-Resilient Personalized Federated Learning [55.54344312542944]
フェデレーション学習は、プライバシと通信の制限を尊重しながら、クライアントの大規模なネットワークに分散されたサンプルからのトレーニングモデルを可能にする。
これら2つのハードルを同時に処理する理論的なスピードアップを保証する新しいアルゴリズム手法を開発した。
提案手法は,すべてのクライアントのデータを用いてグローバルな共通表現を見つけ,各クライアントに対してパーソナライズされたソリューションにつながるパラメータの集合を学習するために,表現学習理論からのアイデアに依存している。
論文 参考訳(メタデータ) (2022-06-05T01:14:46Z) - Fine-tuning Global Model via Data-Free Knowledge Distillation for
Non-IID Federated Learning [86.59588262014456]
フェデレートラーニング(Federated Learning, FL)は、プライバシ制約下での分散学習パラダイムである。
サーバ内のグローバルモデル(FedFTG)を微調整するデータフリー知識蒸留法を提案する。
私たちのFedFTGは最先端(SOTA)のFLアルゴリズムよりも優れており、FedAvg、FedProx、FedDyn、SCAFFOLDの強化のための強力なプラグインとして機能します。
論文 参考訳(メタデータ) (2022-03-17T11:18:17Z) - Towards Fair Federated Learning with Zero-Shot Data Augmentation [123.37082242750866]
フェデレーション学習は重要な分散学習パラダイムとして登場し、サーバはクライアントデータにアクセスせずに、多くのクライアントがトレーニングしたモデルからグローバルモデルを集約する。
本稿では, 統計的不均一性を緩和し, フェデレートネットワークにおけるクライアント間での精度向上を図るために, ゼロショットデータ拡張を用いた新しいフェデレーション学習システムを提案する。
Fed-ZDAC (クライアントでのゼロショットデータ拡張によるフェデレーション学習) と Fed-ZDAS (サーバでのゼロショットデータ拡張によるフェデレーション学習) の2種類について検討する。
論文 参考訳(メタデータ) (2021-04-27T18:23:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。