論文の概要: A physics-informed Bayesian optimization method for rapid development of electrical machines
- arxiv url: http://arxiv.org/abs/2503.00420v1
- Date: Sat, 01 Mar 2025 09:43:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:20:50.540234
- Title: A physics-informed Bayesian optimization method for rapid development of electrical machines
- Title(参考訳): 電気機械の迅速開発のための物理インフォームドベイズ最適化法
- Authors: Pedram Asef, Christopher Vagg,
- Abstract要約: 本研究では、スロット充填率(SFF)を改善するための新しい物理インフォームド機械学習(PIML)設計プロセスを提案する。
最大エントロピーサンプリングアルゴリズム (MESA) を用いて物理インフォームドベイズ最適化 (PIBO) アルゴリズムをシードする。
提案したPIBO-MESAは、非支配的ソート遺伝的アルゴリズム(NSGA-II)のような既存の方法よりも45%高速である。
- 参考スコア(独自算出の注目度): 2.07180164747172
- License:
- Abstract: Advanced slot and winding designs are imperative to create future high performance electrical machines (EM). As a result, the development of methods to design and improve slot filling factor (SFF) has attracted considerable research. Recent developments in manufacturing processes, such as additive manufacturing and alternative materials, has also highlighted a need for novel high-fidelity design techniques to develop high performance complex geometries and topologies. This study therefore introduces a novel physics-informed machine learning (PIML) design optimization process for improving SFF in traction electrical machines used in electric vehicles. A maximum entropy sampling algorithm (MESA) is used to seed a physics-informed Bayesian optimization (PIBO) algorithm, where the target function and its approximations are produced by Gaussian processes (GP)s. The proposed PIBO-MESA is coupled with a 2D finite element model (FEM) to perform a GP-based surrogate and provide the first demonstration of the optimal combination of complex design variables for an electrical machine. Significant computational gains were achieved using the new PIBO-MESA approach, which is 45% faster than existing stochastic methods, such as the non-dominated sorting genetic algorithm II (NSGA-II). The FEM results confirm that the new design optimization process and keystone shaped wires lead to a higher SFF (i.e. by 20%) and electromagnetic improvements (e.g. maximum torque by 12%) with similar resistivity. The newly developed PIBO-MESA design optimization process therefore presents significant benefits in the design of high-performance electric machines, with reduced development time and costs.
- Abstract(参考訳): 先進的なスロットと巻線の設計は将来の高性能電気機械(EM)を作るのに不可欠である。
その結果,スロット充填率(SFF)を設計・改善する手法の開発が注目されている。
添加物製造や代替材料といった製造プロセスの最近の発展は、高性能な複雑な測地やトポロジーを開発するための新しい高忠実度設計技術の必要性も強調している。
そこで本研究では,電気自動車用トラクション電動機におけるSFF改善のための新しい物理インフォームド・機械学習(PIML)設計手法を提案する。
最大エントロピーサンプリングアルゴリズム(MESA)を用いて物理インフォームドベイズ最適化(PIBO)アルゴリズムをシードし、ターゲット関数とその近似をガウス過程(GP)によって生成する。
提案したPIBO-MESAは2次元有限要素モデル(FEM)と結合してGPベースのサロゲートを行い、電気機械の複雑な設計変数を最適に組み合わせた最初の実演を行う。
非支配的ソート遺伝的アルゴリズムII (NSGA-II) のような従来の確率的手法よりも45%高速な新しいPIBO-MESA手法により,計算効率が向上した。
FEMの結果は、新しい設計最適化プロセスとキーストーン形状のワイヤが、より高いSFF(すなわち20%)と電磁的改善(例えば、最大トルクが12%)をもたらすことを確認した。
PIBO-MESAの設計最適化プロセスは、開発時間とコストを削減し、高性能な電気機械の設計において大きな利点をもたらす。
関連論文リスト
- Accelerated Gradient-based Design Optimization Via Differentiable Physics-Informed Neural Operator: A Composites Autoclave Processing Case Study [0.0]
本稿では,複雑な工学系の非線形挙動を効果的にモデル化する物理インフォームドディープONet(PIDON)アーキテクチャを提案する。
3倍の高速化を実現した航空宇宙グレード複合材料硬化プロセスの最適化における本フレームワークの有効性を実証する。
提案モデルには,高度工学およびディジタルツインシステムにおける幅広い応用のための,スケーラブルで効率的な最適化ツールとして使用される可能性がある。
論文 参考訳(メタデータ) (2025-02-17T07:11:46Z) - A Survey on Inference Optimization Techniques for Mixture of Experts Models [50.40325411764262]
大規模Mixture of Experts(MoE)モデルは、条件計算によるモデル容量と計算効率の向上を提供する。
これらのモデル上で推論をデプロイし実行することは、計算資源、レイテンシ、エネルギー効率において大きな課題を示す。
本調査では,システムスタック全体にわたるMoEモデルの最適化手法について分析する。
論文 参考訳(メタデータ) (2024-12-18T14:11:15Z) - Synergistic Development of Perovskite Memristors and Algorithms for Robust Analog Computing [53.77822620185878]
本稿では,ペロブスカイト・メムリスタの製作を同時に最適化し,ロバストなアナログDNNを開発するための相乗的手法を提案する。
BO誘導ノイズインジェクションを利用したトレーニング戦略であるBayesMultiを開発した。
我々の統合されたアプローチは、より深くより広いネットワークでのアナログコンピューティングの使用を可能にし、最大100倍の改善を実現します。
論文 参考訳(メタデータ) (2024-12-03T19:20:08Z) - Automated Design and Optimization of Distributed Filtering Circuits via Reinforcement Learning [20.500468654567033]
そこで本研究では,DFC設計のための新しいエンドツーエンド自動手法を提案する。
提案手法は強化学習(RL)アルゴリズムを利用して,技術者の設計経験への依存を解消する。
本手法は, 複雑もしくは急速に発展するDFCの設計において, 優れた性能を実現する。
論文 参考訳(メタデータ) (2024-02-22T02:36:14Z) - Federated Conditional Stochastic Optimization [110.513884892319]
条件付き最適化は、不変学習タスク、AUPRC、AMLなど、幅広い機械学習タスクで見られる。
本稿では,分散フェデレーション学習のためのアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-10-04T01:47:37Z) - Artificial-Intelligence-Based Design for Circuit Parameters of Power
Converters [0.0]
本稿では,電力変換器のパラメータ設計のための人工知能設計(AI-D)手法を提案する。
高精度で実装が容易な人間依存を軽減するため、シミュレーションツールとバッチ正規化ニューラルネットワーク(BN-NN)が採用されている。
提案手法は, 電気自動車の48V・12Vアクセサリー負荷電源システムにおいて, 同期バックコンバータの回路パラメータ設計において検証される。
論文 参考訳(メタデータ) (2023-07-30T08:39:41Z) - Toward High-Performance Energy and Power Battery Cells with Machine
Learning-based Optimization of Electrode Manufacturing [61.27691515336054]
本研究では,所望のバッテリ適用条件に対する高性能電極の課題に対処する。
本稿では、電気化学性能の2目的最適化のための決定論的機械学習(ML)支援パイプラインによって支援される強力なデータ駆動アプローチを提案する。
以上の結果から,スラリー中の固形物の中間値とカレンダリング度を併用した高活性物質が最適電極となることが示唆された。
論文 参考訳(メタデータ) (2023-07-07T13:48:50Z) - Multi-Objective Optimization of Electrical Machines using a Hybrid
Data-and Physics-Driven Approach [0.0]
永久磁石同期機(PMSM)の数値最適化におけるハイブリッドデータおよび物理駆動モデルの適用について述べる。
データ駆動型教師ありトレーニングの後、ディープニューラルネットワーク(DNN)はPMSMの電磁的挙動を特徴付けるメタモデルとして機能する。
これらの中間測度は、必要な重要な性能指標を計算するために、様々な物理モデルで後処理される。
論文 参考訳(メタデータ) (2023-06-15T12:47:56Z) - Deep learning based Meta-modeling for Multi-objective Technology
Optimization of Electrical Machines [0.0]
本稿では,2つの異なるマシン技術を同時に最適化するための変分自動エンコーダの応用について述べる。
トレーニング後、私たちは、グローバルなキーパフォーマンス指標を予測するために、ディープニューラルネットワークとデコーダをメタモデルとして使用します。
論文 参考訳(メタデータ) (2023-06-15T12:33:39Z) - Full Stack Optimization of Transformer Inference: a Survey [58.55475772110702]
トランスフォーマーモデルは広範囲のアプリケーションにまたがって優れた精度を実現する。
最近のTransformerモデルの推測に必要な計算量と帯域幅は、かなり増加しています。
Transformerモデルをより効率的にすることに注力している。
論文 参考訳(メタデータ) (2023-02-27T18:18:13Z) - Machine Learning Framework for Quantum Sampling of Highly-Constrained,
Continuous Optimization Problems [101.18253437732933]
本研究では,連続空間の逆設計問題を,制約のないバイナリ最適化問題にマッピングする,汎用的な機械学習ベースのフレームワークを開発する。
本研究では, 熱発光トポロジを熱光応用に最適化し, (ii) 高効率ビームステアリングのための拡散メタグレーティングを行うことにより, 2つの逆設計問題に対するフレームワークの性能を示す。
論文 参考訳(メタデータ) (2021-05-06T02:22:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。