論文の概要: Ranking pre-trained segmentation models for zero-shot transferability
- arxiv url: http://arxiv.org/abs/2503.00450v1
- Date: Sat, 01 Mar 2025 11:11:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:19:09.222340
- Title: Ranking pre-trained segmentation models for zero-shot transferability
- Title(参考訳): ゼロショット転送可能性のための事前訓練セグメンテーションモデルのランク付け
- Authors: Joshua Talks, Anna Kreshuk,
- Abstract要約: 十分なトレーニングデータをラベル付けする膨大なコストは、ディープラーニングの使用において大きなボトルネックになります。
セグメンテーションタスクとインスタンスセグメンテーションタスクのための最初の教師なし転送可能性推定器を提案する。
本手法は,顕微鏡モダリティにまたがる複数のセグメンテーション問題に対して評価を行う。
- 参考スコア(独自算出の注目度): 3.0496043297705424
- License:
- Abstract: Model transfer presents a solution to the challenges of segmentation in the microscopy community, where the immense cost of labelling sufficient training data is a major bottleneck in the use of deep learning. With large quantities of imaging data produced across a wide range of imaging conditions, institutes also produce many bespoke models trained on specific source data which then get collected in model banks or zoos. As the number of available models grows, so does the need for an efficient and reliable model selection method for a specific target dataset of interest. We focus on the unsupervised regime where no labels are available for the target dataset. Building on previous work linking model generalisation and consistency under perturbation, we propose the first unsupervised transferability estimator for semantic and instance segmentation tasks which doesn't require access to source training data or target domain labels. We evaluate the method on multiple segmentation problems across microscopy modalities, finding a strong correlation between the rankings based on our estimator and rankings based on target dataset performance.
- Abstract(参考訳): モデル転送は、十分なトレーニングデータをラベル付けする膨大なコストがディープラーニングの使用の大きなボトルネックとなる、顕微鏡コミュニティにおけるセグメンテーションの課題に対する解決策を提供する。
広範囲の撮像条件で生成される大量の画像データとともに、研究所は特定のソースデータに基づいて訓練された多くのベスポークモデルを作成し、モデルバンクや動物園で収集する。
利用可能なモデルの数が増えるにつれて、特定のターゲットデータセットに対する効率的で信頼性の高いモデル選択方法も必要になる。
ターゲットデータセットにラベルが使用できない、教師なしのシステムに重点を置いています。
摂動下でのモデル一般化と一貫性をリンクする以前の作業に基づいて、ソーストレーニングデータやターゲットドメインラベルへのアクセスを必要としないセマンティックおよびインスタンスセグメンテーションタスクのための、最初の教師なし転送可能性推定器を提案する。
本手法は, 顕微鏡モデルを用いた複数セグメント化問題に対する評価を行い, 推定値と推定値との強い相関関係を見出した。
関連論文リスト
- A Two-Phase Recall-and-Select Framework for Fast Model Selection [13.385915962994806]
本稿では,2相モデル選択フレームワークを提案する。
これは、ベンチマークデータセット上でモデルのトレーニングパフォーマンスを活用することにより、堅牢なモデルを選択する効率を高めることを目的としている。
提案手法は,従来のベースライン法に比べて約3倍の速度でハイパフォーマンスモデルの選択を容易にすることが実証された。
論文 参考訳(メタデータ) (2024-03-28T14:44:44Z) - DsDm: Model-Aware Dataset Selection with Datamodels [81.01744199870043]
標準的なプラクティスは、データ品質という人間の考え方にマッチする例をフィルタリングすることです。
質の高い"データソースとの類似性に応じた選択は、ランダムに選択するデータに比べてパフォーマンスが向上しない(さらに傷つく)可能性がある。
我々のフレームワークは、データ品質に関する手作業による概念を回避し、学習プロセスがターゲットタスクの予測にデータポイントをトレーニングする方法を明確にモデル化する。
論文 参考訳(メタデータ) (2024-01-23T17:22:00Z) - Cross-Level Distillation and Feature Denoising for Cross-Domain Few-Shot
Classification [49.36348058247138]
トレーニング段階において,対象領域内のラベルなし画像のごく一部をアクセス可能にすることで,ドメイン間数ショット分類の問題に対処する。
我々は,対象データセットのより識別的な特徴を抽出するモデルの能力を高めるため,クロスレベルな知識蒸留法を慎重に設計する。
提案手法は,従来の動的蒸留法を5.44%,1.37%,5ショット分類法を1.37%超えることができる。
論文 参考訳(メタデータ) (2023-11-04T12:28:04Z) - Building a Winning Team: Selecting Source Model Ensembles using a
Submodular Transferability Estimation Approach [20.86345962679122]
公開されている事前訓練されたモデルの目標タスクへの転送可能性の推定は、伝達学習タスクにとって重要な場所となっている。
本稿では, モデルアンサンブルの下流タスクへの転送可能性を評価するために, 最適なtranSportベースのsuBmOdular tRaNsferability Metrics(OSBORN)を提案する。
論文 参考訳(メタデータ) (2023-09-05T17:57:31Z) - Universal Semi-supervised Model Adaptation via Collaborative Consistency
Training [92.52892510093037]
我々は、Universal Semi-supervised Model Adaptation (USMA)と呼ばれる現実的で挑戦的なドメイン適応問題を導入する。
本稿では,2つのモデル間の予測整合性を規則化する協調的整合性トレーニングフレームワークを提案する。
実験により,いくつかのベンチマークデータセットにおける本手法の有効性が示された。
論文 参考訳(メタデータ) (2023-07-07T08:19:40Z) - Self-Distillation for Further Pre-training of Transformers [83.84227016847096]
我々は、さらなる事前学習段階の正則化として自己蒸留を提案する。
画像およびテキスト分類タスクのための様々なベンチマークデータセットにおける自己蒸留の有効性を実証的に検証する。
論文 参考訳(メタデータ) (2022-09-30T02:25:12Z) - Semi-supervised Deep Learning for Image Classification with Distribution
Mismatch: A Survey [1.5469452301122175]
ディープラーニングモデルは、予測モデルをトレーニングするためにラベル付き観測の豊富な部分に依存します。
ラベル付きデータ観測を収集することは高価であり、ディープラーニングモデルの使用は理想的ではない。
多くの状況では、異なる非競合データソースが利用可能である。
これにより、ラベル付きデータセットと非ラベル付きデータセットの間にかなりの分散ミスマッチが発生するリスクが生じる。
論文 参考訳(メタデータ) (2022-03-01T02:46:00Z) - MSeg: A Composite Dataset for Multi-domain Semantic Segmentation [100.17755160696939]
セマンティックセグメンテーションデータセットを異なるドメインから統合する合成データセットであるMSegを提案する。
一般化と画素レベルのアノテーションのアライメントを調整し,2万枚以上のオブジェクトマスクを8万枚以上の画像で再現する。
MSegでトレーニングされたモデルは、WildDash-v1のリーダーボードで、トレーニング中にWildDashのデータに触れることなく、堅牢なセマンティックセグメンテーションのためにランク付けされている。
論文 参考訳(メタデータ) (2021-12-27T16:16:35Z) - Transferability Estimation using Bhattacharyya Class Separability [37.52588126267552]
トランスファーラーニング(Transfer Learning)は、コンピュータビジョンにおいて事前訓練されたモデルを活用する一般的な方法である。
特定の目標タスクに適した事前学習されたソースモデルを定量化することは困難である。
本稿では,ソースモデルとターゲットデータセット間の転送可能性の定量化手法を提案する。
論文 参考訳(メタデータ) (2021-11-24T20:22:28Z) - A Survey on Self-supervised Pre-training for Sequential Transfer
Learning in Neural Networks [1.1802674324027231]
移動学習のための自己教師付き事前学習は、ラベルのないデータを用いて最先端の結果を改善する技術として、ますます人気が高まっている。
本稿では,自己指導型学習と伝達学習の分類学の概要を述べるとともに,各領域にまたがる事前学習タスクを設計するためのいくつかの顕著な手法を強調した。
論文 参考訳(メタデータ) (2020-07-01T22:55:48Z) - Uncertainty-aware Self-training for Text Classification with Few Labels [54.13279574908808]
本研究は,アノテーションのボトルネックを軽減するための半教師あり学習手法の1つとして,自己学習について研究する。
本稿では,基礎となるニューラルネットワークの不確実性推定を取り入れて,自己学習を改善する手法を提案する。
本手法では,クラス毎に20~30個のラベル付きサンプルをトレーニングに利用し,完全教師付き事前学習言語モデルの3%以内で検証を行う。
論文 参考訳(メタデータ) (2020-06-27T08:13:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。