Adaptive Rectangular Convolution for Remote Sensing Pansharpening
- URL: http://arxiv.org/abs/2503.00467v1
- Date: Sat, 01 Mar 2025 12:40:42 GMT
- Title: Adaptive Rectangular Convolution for Remote Sensing Pansharpening
- Authors: Xueyang Wang, Zhixin Zheng, Jiandong Shao, Yule Duan, Liang-Jian Deng,
- Abstract summary: We introduce an innovative convolutional module, Adaptive Rectangular Convolution (ARConv)<n>ARConv adaptively learns both the height and width of the convolutional kernel and dynamically adjusts the number of sampling points based on the learned scale.<n>This approach enables ARConv to effectively capture scale-specific features of various objects within an image, optimizing kernel sizes and sampling locations.
- Score: 10.045872885149562
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in convolutional neural network (CNN)-based techniques for remote sensing pansharpening have markedly enhanced image quality. However, conventional convolutional modules in these methods have two critical drawbacks. First, the sampling positions in convolution operations are confined to a fixed square window. Second, the number of sampling points is preset and remains unchanged. Given the diverse object sizes in remote sensing images, these rigid parameters lead to suboptimal feature extraction. To overcome these limitations, we introduce an innovative convolutional module, Adaptive Rectangular Convolution (ARConv). ARConv adaptively learns both the height and width of the convolutional kernel and dynamically adjusts the number of sampling points based on the learned scale. This approach enables ARConv to effectively capture scale-specific features of various objects within an image, optimizing kernel sizes and sampling locations. Additionally, we propose ARNet, a network architecture in which ARConv is the primary convolutional module. Extensive evaluations across multiple datasets reveal the superiority of our method in enhancing pansharpening performance over previous techniques. Ablation studies and visualization further confirm the efficacy of ARConv.
Related papers
- RaCFormer: Towards High-Quality 3D Object Detection via Query-based Radar-Camera Fusion [58.77329237533034]
We propose a Radar-Camera fusion transformer (RaCFormer) to boost the accuracy of 3D object detection.
RaCFormer achieves superior results of 64.9% mAP and 70.2% on nuScenes datasets.
arXiv Detail & Related papers (2024-12-17T09:47:48Z) - Hyper-VolTran: Fast and Generalizable One-Shot Image to 3D Object
Structure via HyperNetworks [53.67497327319569]
We introduce a novel neural rendering technique to solve image-to-3D from a single view.
Our approach employs the signed distance function as the surface representation and incorporates generalizable priors through geometry-encoding volumes and HyperNetworks.
Our experiments show the advantages of our proposed approach with consistent results and rapid generation.
arXiv Detail & Related papers (2023-12-24T08:42:37Z) - LDConv: Linear deformable convolution for improving convolutional neural networks [18.814748446649627]
Linear Deformable Convolution (LDConv) is a plug-and-play convolutional operation that can replace the convolutional operation to improve network performance.
LDConv corrects the growth trend of the number of parameters for standard convolution and Deformable Conv to a linear growth.
arXiv Detail & Related papers (2023-11-20T07:54:54Z) - Geometric-aware Pretraining for Vision-centric 3D Object Detection [77.7979088689944]
We propose a novel geometric-aware pretraining framework called GAPretrain.
GAPretrain serves as a plug-and-play solution that can be flexibly applied to multiple state-of-the-art detectors.
We achieve 46.2 mAP and 55.5 NDS on the nuScenes val set using the BEVFormer method, with a gain of 2.7 and 2.1 points, respectively.
arXiv Detail & Related papers (2023-04-06T14:33:05Z) - Adaptive Rotated Convolution for Rotated Object Detection [96.94590550217718]
We present Adaptive Rotated Convolution (ARC) module to handle rotated object detection problem.
In our ARC module, the convolution kernels rotate adaptively to extract object features with varying orientations in different images.
The proposed approach achieves state-of-the-art performance on the DOTA dataset with 81.77% mAP.
arXiv Detail & Related papers (2023-03-14T11:53:12Z) - CSformer: Bridging Convolution and Transformer for Compressive Sensing [65.22377493627687]
This paper proposes a hybrid framework that integrates the advantages of leveraging detailed spatial information from CNN and the global context provided by transformer for enhanced representation learning.
The proposed approach is an end-to-end compressive image sensing method, composed of adaptive sampling and recovery.
The experimental results demonstrate the effectiveness of the dedicated transformer-based architecture for compressive sensing.
arXiv Detail & Related papers (2021-12-31T04:37:11Z) - Enhancing Object Detection for Autonomous Driving by Optimizing Anchor
Generation and Addressing Class Imbalance [0.0]
This study presents an enhanced 2D object detector based on Faster R-CNN that is better suited for the context of autonomous vehicles.
The proposed modifications over the Faster R-CNN do not increase computational cost and can easily be extended to optimize other anchor-based detection frameworks.
arXiv Detail & Related papers (2021-04-08T16:58:31Z) - CFC-Net: A Critical Feature Capturing Network for Arbitrary-Oriented
Object Detection in Remote Sensing Images [0.9462808515258465]
In this paper, we discuss the role of discriminative features in object detection.
We then propose a Critical Feature Capturing Network (CFC-Net) to improve detection accuracy.
We show that our method achieves superior detection performance compared with many state-of-the-art approaches.
arXiv Detail & Related papers (2021-01-18T02:31:09Z) - Robust Unsupervised Small Area Change Detection from SAR Imagery Using
Deep Learning [23.203687716051697]
A robust unsupervised approach is proposed for small area change detection from synthetic aperture radar (SAR) images.
A multi-scale superpixel reconstruction method is developed to generate a difference image (DI)
A two-stage centre-constrained fuzzy c-means clustering algorithm is proposed to divide the pixels of the DI into changed, unchanged and intermediate classes.
arXiv Detail & Related papers (2020-11-22T12:50:08Z) - Anchor-free Small-scale Multispectral Pedestrian Detection [88.7497134369344]
We propose a method for effective and efficient multispectral fusion of the two modalities in an adapted single-stage anchor-free base architecture.
We aim at learning pedestrian representations based on object center and scale rather than direct bounding box predictions.
Results show our method's effectiveness in detecting small-scaled pedestrians.
arXiv Detail & Related papers (2020-08-19T13:13:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.