Towards Relation-centered Pooling and Convolution for Heterogeneous
Graph Learning Networks
- URL: http://arxiv.org/abs/2210.17142v1
- Date: Mon, 31 Oct 2022 08:43:32 GMT
- Title: Towards Relation-centered Pooling and Convolution for Heterogeneous
Graph Learning Networks
- Authors: Tiehua Zhang, Yuze Liu, Yao Yao, Youhua Xia, Xin Chen, Xiaowei Huang,
Jiong Jin
- Abstract summary: Heterogeneous graph neural network has unleashed great potential on graph representation learning.
We design a relation-centered Pooling and Convolution for Heterogeneous Graph learning Network, namely PC-HGN, to enable relation-specific sampling and cross-relation convolutions.
We evaluate the performance of the proposed model by comparing with state-of-the-art graph learning models on three different real-world datasets.
- Score: 11.421162988355146
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Heterogeneous graph neural network has unleashed great potential on graph
representation learning and shown superior performance on downstream tasks such
as node classification and clustering. Existing heterogeneous graph learning
networks are primarily designed to either rely on pre-defined meta-paths or use
attention mechanisms for type-specific attentive message propagation on
different nodes/edges, incurring many customization efforts and computational
costs. To this end, we design a relation-centered Pooling and Convolution for
Heterogeneous Graph learning Network, namely PC-HGN, to enable
relation-specific sampling and cross-relation convolutions, from which the
structural heterogeneity of the graph can be better encoded into the embedding
space through the adaptive training process. We evaluate the performance of the
proposed model by comparing with state-of-the-art graph learning models on
three different real-world datasets, and the results show that PC-HGN
consistently outperforms all the baseline and improves the performance
maximumly up by 17.8%.
Related papers
- Self-Supervised Graph Neural Networks for Enhanced Feature Extraction in Heterogeneous Information Networks [16.12856816023414]
This paper explores the applications and challenges of graph neural networks (GNNs) in processing complex graph data brought about by the rapid development of the Internet.
By introducing a self-supervisory mechanism, it is expected to improve the adaptability of existing models to the diversity and complexity of graph data.
arXiv Detail & Related papers (2024-10-23T07:14:37Z) - Deep Contrastive Graph Learning with Clustering-Oriented Guidance [61.103996105756394]
Graph Convolutional Network (GCN) has exhibited remarkable potential in improving graph-based clustering.
Models estimate an initial graph beforehand to apply GCN.
Deep Contrastive Graph Learning (DCGL) model is proposed for general data clustering.
arXiv Detail & Related papers (2024-02-25T07:03:37Z) - RHCO: A Relation-aware Heterogeneous Graph Neural Network with
Contrastive Learning for Large-scale Graphs [26.191673964156585]
We propose a novel Relation-aware Heterogeneous Graph Neural Network with Contrastive Learning (RHCO) for large-scale heterogeneous graph representation learning.
RHCO achieves best performance over the state-of-the-art models.
arXiv Detail & Related papers (2022-11-20T04:45:04Z) - Learning Graph Structure from Convolutional Mixtures [119.45320143101381]
We propose a graph convolutional relationship between the observed and latent graphs, and formulate the graph learning task as a network inverse (deconvolution) problem.
In lieu of eigendecomposition-based spectral methods, we unroll and truncate proximal gradient iterations to arrive at a parameterized neural network architecture that we call a Graph Deconvolution Network (GDN)
GDNs can learn a distribution of graphs in a supervised fashion, perform link prediction or edge-weight regression tasks by adapting the loss function, and they are inherently inductive.
arXiv Detail & Related papers (2022-05-19T14:08:15Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
We propose a bi-level optimization approach for learning the optimal graph structure.
We also explore a low-rank approximation model for further reducing the time complexity.
arXiv Detail & Related papers (2022-05-06T03:37:00Z) - A Robust and Generalized Framework for Adversarial Graph Embedding [73.37228022428663]
We propose a robust framework for adversarial graph embedding, named AGE.
AGE generates the fake neighbor nodes as the enhanced negative samples from the implicit distribution.
Based on this framework, we propose three models to handle three types of graph data.
arXiv Detail & Related papers (2021-05-22T07:05:48Z) - GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training [62.73470368851127]
Graph representation learning has emerged as a powerful technique for addressing real-world problems.
We design Graph Contrastive Coding -- a self-supervised graph neural network pre-training framework.
We conduct experiments on three graph learning tasks and ten graph datasets.
arXiv Detail & Related papers (2020-06-17T16:18:35Z) - Tensor Graph Convolutional Networks for Multi-relational and Robust
Learning [74.05478502080658]
This paper introduces a tensor-graph convolutional network (TGCN) for scalable semi-supervised learning (SSL) from data associated with a collection of graphs, that are represented by a tensor.
The proposed architecture achieves markedly improved performance relative to standard GCNs, copes with state-of-the-art adversarial attacks, and leads to remarkable SSL performance over protein-to-protein interaction networks.
arXiv Detail & Related papers (2020-03-15T02:33:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.