Channel-Attentive Graph Neural Networks
- URL: http://arxiv.org/abs/2503.00578v2
- Date: Wed, 05 Mar 2025 12:00:38 GMT
- Title: Channel-Attentive Graph Neural Networks
- Authors: Tuğrul Hasan Karabulut, İnci M. Baytaş,
- Abstract summary: Graph Neural Networks (GNNs) set the state-of-the-art in representation learning for graph-structured data.<n>Message-passing mechanism used in most models suffers from over-smoothing as a GNN's depth increases.<n>This study proposes an adaptive channel-wise message-passing approach to alleviate the over-smoothing.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph Neural Networks (GNNs) set the state-of-the-art in representation learning for graph-structured data. They are used in many domains, from online social networks to complex molecules. Most GNNs leverage the message-passing paradigm and achieve strong performances on various tasks. However, the message-passing mechanism used in most models suffers from over-smoothing as a GNN's depth increases. The over-smoothing degrades GNN's performance due to the increased similarity between the representations of unrelated nodes. This study proposes an adaptive channel-wise message-passing approach to alleviate the over-smoothing. The proposed model, Channel-Attentive GNN, learns how to attend to neighboring nodes and their feature channels. Thus, much diverse information can be transferred between nodes during message-passing. Experiments with widely used benchmark datasets show that the proposed model is more resistant to over-smoothing than baselines and achieves state-of-the-art performances for various graphs with strong heterophily. Our code is at https://github.com/ALLab-Boun/CHAT-GNN.
Related papers
- Graph Ladling: Shockingly Simple Parallel GNN Training without
Intermediate Communication [100.51884192970499]
GNNs are a powerful family of neural networks for learning over graphs.
scaling GNNs either by deepening or widening suffers from prevalent issues of unhealthy gradients, over-smoothening, information squashing.
We propose not to deepen or widen current GNNs, but instead present a data-centric perspective of model soups tailored for GNNs.
arXiv Detail & Related papers (2023-06-18T03:33:46Z) - LSGNN: Towards General Graph Neural Network in Node Classification by
Local Similarity [59.41119013018377]
We propose to use the local similarity (LocalSim) to learn node-level weighted fusion, which can also serve as a plug-and-play module.
For better fusion, we propose a novel and efficient Initial Residual Difference Connection (IRDC) to extract more informative multi-hop information.
Our proposed method, namely Local Similarity Graph Neural Network (LSGNN), can offer comparable or superior state-of-the-art performance on both homophilic and heterophilic graphs.
arXiv Detail & Related papers (2023-05-07T09:06:11Z) - Reducing Over-smoothing in Graph Neural Networks Using Relational
Embeddings [0.15619750966454563]
We propose a new simple, and efficient method to alleviate the effect of the over-smoothing problem in GNNs.
Our method can be used in combination with other methods to give the best performance.
arXiv Detail & Related papers (2023-01-07T19:26:04Z) - Neo-GNNs: Neighborhood Overlap-aware Graph Neural Networks for Link
Prediction [23.545059901853815]
Graph Neural Networks (GNNs) have been widely applied to various fields for learning over graphstructured data.
We propose Neighborhood Overlap-aware Graph Neural Networks (Neo-GNNs) that learn useful structural features from an adjacency overlapped neighborhoods for link prediction.
arXiv Detail & Related papers (2022-06-09T01:43:49Z) - AdaGNN: A multi-modal latent representation meta-learner for GNNs based
on AdaBoosting [0.38073142980733]
Graph Neural Networks (GNNs) focus on extracting intrinsic network features.
We propose boosting-based meta learner for GNNs.
AdaGNN performs exceptionally well for applications with rich and diverse node neighborhood information.
arXiv Detail & Related papers (2021-08-14T03:07:26Z) - Boost then Convolve: Gradient Boosting Meets Graph Neural Networks [6.888700669980625]
We show that gradient boosted decision trees (GBDT) often outperform other machine learning methods when faced with heterogeneous data.
We propose a novel architecture that trains GBDT and GNN jointly to get the best of both worlds.
Our model benefits from end-to-end optimization by allowing new trees to fit the gradient updates of GNN.
arXiv Detail & Related papers (2021-01-21T10:46:41Z) - Multi-grained Semantics-aware Graph Neural Networks [13.720544777078642]
Graph Neural Networks (GNNs) are powerful techniques in representation learning for graphs.
This work proposes a unified model, AdamGNN, to interactively learn node and graph representations.
Experiments on 14 real-world graph datasets show that AdamGNN can significantly outperform 17 competing models on both node- and graph-wise tasks.
arXiv Detail & Related papers (2020-10-01T07:52:06Z) - Distance Encoding: Design Provably More Powerful Neural Networks for
Graph Representation Learning [63.97983530843762]
Graph Neural Networks (GNNs) have achieved great success in graph representation learning.
GNNs generate identical representations for graph substructures that may in fact be very different.
More powerful GNNs, proposed recently by mimicking higher-order tests, are inefficient as they cannot sparsity of underlying graph structure.
We propose Distance Depiction (DE) as a new class of graph representation learning.
arXiv Detail & Related papers (2020-08-31T23:15:40Z) - Graph Neural Networks: Architectures, Stability and Transferability [176.3960927323358]
Graph Neural Networks (GNNs) are information processing architectures for signals supported on graphs.
They are generalizations of convolutional neural networks (CNNs) in which individual layers contain banks of graph convolutional filters.
arXiv Detail & Related papers (2020-08-04T18:57:36Z) - Towards Deeper Graph Neural Networks with Differentiable Group
Normalization [61.20639338417576]
Graph neural networks (GNNs) learn the representation of a node by aggregating its neighbors.
Over-smoothing is one of the key issues which limit the performance of GNNs as the number of layers increases.
We introduce two over-smoothing metrics and a novel technique, i.e., differentiable group normalization (DGN)
arXiv Detail & Related papers (2020-06-12T07:18:02Z) - Graphs, Convolutions, and Neural Networks: From Graph Filters to Graph
Neural Networks [183.97265247061847]
We leverage graph signal processing to characterize the representation space of graph neural networks (GNNs)
We discuss the role of graph convolutional filters in GNNs and show that any architecture built with such filters has the fundamental properties of permutation equivariance and stability to changes in the topology.
We also study the use of GNNs in recommender systems and learning decentralized controllers for robot swarms.
arXiv Detail & Related papers (2020-03-08T13:02:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.