Brain Foundation Models: A Survey on Advancements in Neural Signal Processing and Brain Discovery
- URL: http://arxiv.org/abs/2503.00580v2
- Date: Sat, 19 Jul 2025 09:40:27 GMT
- Title: Brain Foundation Models: A Survey on Advancements in Neural Signal Processing and Brain Discovery
- Authors: Xinliang Zhou, Chenyu Liu, Zhisheng Chen, Kun Wang, Yi Ding, Ziyu Jia, Qingsong Wen,
- Abstract summary: Brain foundation models (BFMs) have emerged as a transformative paradigm in computational neuroscience.<n>BFMs leverage large-scale pre-training techniques, allowing them to generalize effectively across multiple scenarios, tasks, and modalities.<n>In this survey, we define BFMs for the first time, providing a clear and concise framework for constructing and utilizing these models in various applications.
- Score: 20.558821847407895
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Brain foundation models (BFMs) have emerged as a transformative paradigm in computational neuroscience, offering a revolutionary framework for processing diverse neural signals across different brain-related tasks. These models leverage large-scale pre-training techniques, allowing them to generalize effectively across multiple scenarios, tasks, and modalities, thus overcoming the traditional limitations faced by conventional artificial intelligence (AI) approaches in understanding complex brain data. By tapping into the power of pretrained models, BFMs provide a means to process neural data in a more unified manner, enabling advanced analysis and discovery in the field of neuroscience. In this survey, we define BFMs for the first time, providing a clear and concise framework for constructing and utilizing these models in various applications. We also examine the key principles and methodologies for developing these models, shedding light on how they transform the landscape of neural signal processing. This survey presents a comprehensive review of the latest advancements in BFMs, covering the most recent methodological innovations, novel views of application areas, and challenges in the field. Notably, we highlight the future directions and key challenges that need to be addressed to fully realize the potential of BFMs. These challenges include improving the quality of brain data, optimizing model architecture for better generalization, increasing training efficiency, and enhancing the interpretability and robustness of BFMs in real-world applications.
Related papers
- AdaBrain-Bench: Benchmarking Brain Foundation Models for Brain-Computer Interface Applications [52.91583053243446]
Non-invasive Brain-Computer Interfaces (BCI) offer a safe and accessible means of connecting the human brain to external devices.<n>Recently, the adoption of self-supervised pre-training is transforming the landscape of non-invasive BCI research.<n>AdaBrain-Bench is a standardized benchmark to evaluate brain foundation models in widespread non-invasive BCI tasks.
arXiv Detail & Related papers (2025-07-14T03:37:41Z) - Bridging Brain with Foundation Models through Self-Supervised Learning [5.0273296425814635]
Foundation models (FMs) have redefined the capabilities of artificial intelligence.<n>These advances present a transformative opportunity for brain signal analysis.<n>This survey systematically reviews the emerging field of bridging brain signals with foundation models.
arXiv Detail & Related papers (2025-06-19T04:03:58Z) - Brain Imaging Foundation Models, Are We There Yet? A Systematic Review of Foundation Models for Brain Imaging and Biomedical Research [6.113042369956893]
Foundation models (FMs) have revolutionized artificial intelligence and shown significant promise in medical imaging.<n>Brain imaging remains underrepresented, despite its critical role in the diagnosis and treatment of neurological diseases.<n>We present the first comprehensive and curated review of FMs for brain imaging.
arXiv Detail & Related papers (2025-06-16T09:46:46Z) - NOBLE -- Neural Operator with Biologically-informed Latent Embeddings to Capture Experimental Variability in Biological Neuron Models [68.89389652724378]
NOBLE is a neural operator framework that learns a mapping from a continuous frequency-modulated embedding of interpretable neuron features to the somatic voltage response induced by current injection.<n>It predicts distributions of neural dynamics accounting for the intrinsic experimental variability.<n>NOBLE is the first scaled-up deep learning framework validated on real experimental data.
arXiv Detail & Related papers (2025-06-05T01:01:18Z) - A Review of Latent Representation Models in Neuroimaging [0.0]
Latent representation models are designed to reduce high-dimensional neuroimaging data to lower-dimensional latent spaces.<n>By modeling these latent spaces, researchers hope to gain insights into the biology and function of the brain.<n>This review discusses how these models are used for clinical applications, like disease diagnosis and progression monitoring, but also for exploring fundamental brain mechanisms.
arXiv Detail & Related papers (2024-12-24T19:12:11Z) - Enhancing learning in spiking neural networks through neuronal heterogeneity and neuromodulatory signaling [52.06722364186432]
We propose a biologically-informed framework for enhancing artificial neural networks (ANNs)
Our proposed dual-framework approach highlights the potential of spiking neural networks (SNNs) for emulating diverse spiking behaviors.
We outline how the proposed approach integrates brain-inspired compartmental models and task-driven SNNs, bioinspiration and complexity.
arXiv Detail & Related papers (2024-07-05T14:11:28Z) - BrainMAE: A Region-aware Self-supervised Learning Framework for Brain Signals [11.030708270737964]
We propose Brain Masked Auto-Encoder (BrainMAE) for learning representations directly from fMRI time-series data.
BrainMAE consistently outperforms established baseline methods by significant margins in four distinct downstream tasks.
arXiv Detail & Related papers (2024-06-24T19:16:24Z) - BrainSegFounder: Towards 3D Foundation Models for Neuroimage Segmentation [6.5388528484686885]
This study introduces a novel approach towards the creation of medical foundation models.
Our method involves a novel two-stage pretraining approach using vision transformers.
BrainFounder demonstrates a significant performance gain, surpassing the achievements of previous winning solutions.
arXiv Detail & Related papers (2024-06-14T19:49:45Z) - MindBridge: A Cross-Subject Brain Decoding Framework [60.58552697067837]
Brain decoding aims to reconstruct stimuli from acquired brain signals.
Currently, brain decoding is confined to a per-subject-per-model paradigm.
We present MindBridge, that achieves cross-subject brain decoding by employing only one model.
arXiv Detail & Related papers (2024-04-11T15:46:42Z) - A Neuro-mimetic Realization of the Common Model of Cognition via Hebbian
Learning and Free Energy Minimization [55.11642177631929]
Large neural generative models are capable of synthesizing semantically rich passages of text or producing complex images.
We discuss the COGnitive Neural GENerative system, such an architecture that casts the Common Model of Cognition.
arXiv Detail & Related papers (2023-10-14T23:28:48Z) - Multimodal foundation models are better simulators of the human brain [65.10501322822881]
We present a newly-designed multimodal foundation model pre-trained on 15 million image-text pairs.
We find that both visual and lingual encoders trained multimodally are more brain-like compared with unimodal ones.
arXiv Detail & Related papers (2022-08-17T12:36:26Z) - Ultrasound Signal Processing: From Models to Deep Learning [64.56774869055826]
Medical ultrasound imaging relies heavily on high-quality signal processing to provide reliable and interpretable image reconstructions.
Deep learning based methods, which are optimized in a data-driven fashion, have gained popularity.
A relatively new paradigm combines the power of the two: leveraging data-driven deep learning, as well as exploiting domain knowledge.
arXiv Detail & Related papers (2022-04-09T13:04:36Z) - Ranking of Communities in Multiplex Spatiotemporal Models of Brain
Dynamics [0.0]
We propose an interpretation of neural HMMs as multiplex brain state graph models we term Hidden Markov Graph Models (HMs)
This interpretation allows for dynamic brain activity to be analysed using the full repertoire of network analysis techniques.
We produce a new tool for determining important communities of brain regions using a random walk-based procedure.
arXiv Detail & Related papers (2022-03-17T12:14:09Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
We introduce a new class of physics-informed neural networks-EINN-crafted for epidemic forecasting.
We investigate how to leverage both the theoretical flexibility provided by mechanistic models as well as the data-driven expressability afforded by AI models.
arXiv Detail & Related papers (2022-02-21T18:59:03Z) - Incorporating structured assumptions with probabilistic graphical models
in fMRI data analysis [5.23143327587266]
We review a few recently developed algorithms in various domains of fMRI research.
These algorithms all tackle the challenges in fMRI similarly.
We advocate wider adoption of explicit model construction in cognitive neuroscience.
arXiv Detail & Related papers (2020-05-11T06:32:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.