AdaBrain-Bench: Benchmarking Brain Foundation Models for Brain-Computer Interface Applications
- URL: http://arxiv.org/abs/2507.09882v2
- Date: Tue, 05 Aug 2025 13:09:19 GMT
- Title: AdaBrain-Bench: Benchmarking Brain Foundation Models for Brain-Computer Interface Applications
- Authors: Jiamin Wu, Zichen Ren, Junyu Wang, Pengyu Zhu, Yonghao Song, Mianxin Liu, Qihao Zheng, Lei Bai, Wanli Ouyang, Chunfeng Song,
- Abstract summary: Non-invasive Brain-Computer Interfaces (BCI) offer a safe and accessible means of connecting the human brain to external devices.<n>Recently, the adoption of self-supervised pre-training is transforming the landscape of non-invasive BCI research.<n>AdaBrain-Bench is a standardized benchmark to evaluate brain foundation models in widespread non-invasive BCI tasks.
- Score: 52.91583053243446
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Non-invasive Brain-Computer Interfaces (BCI) offer a safe and accessible means of connecting the human brain to external devices, with broad applications in home and clinical settings to enhance human capabilities. However, the high noise level and limited task-specific data in non-invasive signals constrain decoding capabilities. Recently, the adoption of self-supervised pre-training is transforming the landscape of non-invasive BCI research, enabling the development of brain foundation models to capture generic neural representations from large-scale unlabeled electroencephalography (EEG) signals with substantial noises. However, despite these advances, the field currently lacks comprehensive, practical and extensible benchmarks to assess the utility of the public foundation models across diverse BCI tasks, hindering their widespread adoption. To address this challenge, we present AdaBrain-Bench, a large-scale standardized benchmark to systematically evaluate brain foundation models in widespread non-invasive BCI tasks. AdaBrain-Bench encompasses a diverse collection of representative BCI decoding datasets spanning 7 key applications. It introduces a streamlined task adaptation pipeline integrated with multi-dimensional evaluation metrics and a set of adaptation tools. The benchmark delivers an inclusive framework for assessing generalizability of brain foundation models across key transfer settings, including cross-subject, multi-subject, and few-shot scenarios. We leverage AdaBrain-Bench to evaluate a suite of publicly available brain foundation models and offer insights into practices for selecting appropriate models in various scenarios. We make our benchmark pipeline available to enable reproducible research and external use, offering a continuously evolving platform to foster progress toward robust and generalized neural decoding solutions.
Related papers
- CSBrain: A Cross-scale Spatiotemporal Brain Foundation Model for EEG Decoding [57.90382885533593]
We propose a Cross-scale Spatiotemporal Brain foundation model for generalized decoding EEG signals.<n>We show that CSBrain consistently outperforms task-specific and foundation model baselines.<n>These results establish cross-scale modeling as a key inductive bias and position CSBrain as a robust backbone for future brain-AI research.
arXiv Detail & Related papers (2025-06-29T03:29:34Z) - Bridging Brain with Foundation Models through Self-Supervised Learning [5.0273296425814635]
Foundation models (FMs) have redefined the capabilities of artificial intelligence.<n>These advances present a transformative opportunity for brain signal analysis.<n>This survey systematically reviews the emerging field of bridging brain signals with foundation models.
arXiv Detail & Related papers (2025-06-19T04:03:58Z) - BrainOmni: A Brain Foundation Model for Unified EEG and MEG Signals [50.76802709706976]
This paper proposes Brain Omni, the first brain foundation model that generalises across heterogeneous EEG and MEG recordings.<n>To unify diverse data sources, we introduce BrainTokenizer, the first tokenizer that quantises neural brain activity into discrete representations.<n>A total of 1,997 hours of EEG and 656 hours of MEG data are curated and standardised from publicly available sources for pretraining.
arXiv Detail & Related papers (2025-05-18T14:07:14Z) - PyTDC: A multimodal machine learning training, evaluation, and inference platform for biomedical foundation models [59.17570021208177]
PyTDC is a machine-learning platform providing streamlined training, evaluation, and inference software for multimodal biological AI models.<n>This paper discusses the components of PyTDC's architecture and, to our knowledge, the first-of-its-kind case study on the introduced single-cell drug-target nomination ML task.
arXiv Detail & Related papers (2025-05-08T18:15:38Z) - Brain Foundation Models: A Survey on Advancements in Neural Signal Processing and Brain Discovery [20.558821847407895]
Brain foundation models (BFMs) have emerged as a transformative paradigm in computational neuroscience.<n>BFMs leverage large-scale pre-training techniques, allowing them to generalize effectively across multiple scenarios, tasks, and modalities.<n>In this survey, we define BFMs for the first time, providing a clear and concise framework for constructing and utilizing these models in various applications.
arXiv Detail & Related papers (2025-03-01T18:12:50Z) - Du-IN: Discrete units-guided mask modeling for decoding speech from Intracranial Neural signals [5.283718601431859]
Invasive brain-computer interfaces with Electrocorticography (ECoG) have shown promise for high-performance speech decoding in medical applications.
We developed the Du-IN model, which extracts contextual embeddings based on region-level tokens through discrete codex-guided mask modeling.
Our model achieves state-of-the-art performance on the 61-word classification task, surpassing all baselines.
arXiv Detail & Related papers (2024-05-19T06:00:36Z) - UMBRAE: Unified Multimodal Brain Decoding [43.6339793925953]
We propose UMBRAE, a unified multimodal decoding of brain signals.
We introduce an efficient universal brain encoder for multimodal-brain alignment.
We also introduce a cross-subject training strategy mapping subject-specific features to a common feature space.
arXiv Detail & Related papers (2024-04-10T17:59:20Z) - NeuroIDBench: An Open-Source Benchmark Framework for the Standardization of Methodology in Brainwave-based Authentication Research [4.9286860173040825]
Biometric systems based on brain activity have been proposed as an alternative to passwords or to complement current authentication techniques.
NeuroIDBench is a flexible open source tool to benchmark brainwave-based authentication models.
arXiv Detail & Related papers (2024-02-13T18:38:18Z) - NeuroBench: A Framework for Benchmarking Neuromorphic Computing Algorithms and Systems [50.076028127394366]
We present NeuroBench: a benchmark framework for neuromorphic computing algorithms and systems.<n>NeuroBench is a collaboratively-designed effort from an open community of researchers across industry and academia.
arXiv Detail & Related papers (2023-04-10T15:12:09Z) - Cross-Subject Deep Transfer Models for Evoked Potentials in
Brain-Computer Interface [3.0981875303080804]
Brain Computer Interface (BCI) technologies have the potential to improve the lives of millions of people around the world.
Despite advancements in the field, at present consumer and clinical viability remains low.
arXiv Detail & Related papers (2023-01-29T02:11:36Z) - CorpusBrain: Pre-train a Generative Retrieval Model for
Knowledge-Intensive Language Tasks [62.22920673080208]
Single-step generative model can dramatically simplify the search process and be optimized in end-to-end manner.
We name the pre-trained generative retrieval model as CorpusBrain as all information about the corpus is encoded in its parameters without the need of constructing additional index.
arXiv Detail & Related papers (2022-08-16T10:22:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.