Cross-Attention Fusion of MRI and Jacobian Maps for Alzheimer's Disease Diagnosis
- URL: http://arxiv.org/abs/2503.00586v1
- Date: Sat, 01 Mar 2025 18:50:46 GMT
- Title: Cross-Attention Fusion of MRI and Jacobian Maps for Alzheimer's Disease Diagnosis
- Authors: Shijia Zhang, Xiyu Ding, Brian Caffo, Junyu Chen, Cindy Zhang, Hadi Kharrazi, Zheyu Wang,
- Abstract summary: We propose a cross-attention fusion framework to model the intrinsic relationship between sMRI intensity and JSM-derived deformations for Alzheimer's disease classification.<n>Cross-attention fusion achieves superior performance, with mean ROC-AUC scores of 0.903 for AD vs. cognitively normal (CN) and 0.692 for mild cognitive impairment (MCI) vs. CN.<n>Despite its strong performance, our model remains highly efficient, with only 1.56 million parameters--over 40 times fewer than ResNet-34 (63M) and Swin UNETR (61.98M)
- Score: 5.955559082904072
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Early diagnosis of Alzheimer's disease (AD) is critical for intervention before irreversible neurodegeneration occurs. Structural MRI (sMRI) is widely used for AD diagnosis, but conventional deep learning approaches primarily rely on intensity-based features, which require large datasets to capture subtle structural changes. Jacobian determinant maps (JSM) provide complementary information by encoding localized brain deformations, yet existing multimodal fusion strategies fail to fully integrate these features with sMRI. We propose a cross-attention fusion framework to model the intrinsic relationship between sMRI intensity and JSM-derived deformations for AD classification. Using the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset, we compare cross-attention, pairwise self-attention, and bottleneck attention with four pre-trained 3D image encoders. Cross-attention fusion achieves superior performance, with mean ROC-AUC scores of 0.903 (+/-0.033) for AD vs. cognitively normal (CN) and 0.692 (+/-0.061) for mild cognitive impairment (MCI) vs. CN. Despite its strong performance, our model remains highly efficient, with only 1.56 million parameters--over 40 times fewer than ResNet-34 (63M) and Swin UNETR (61.98M). These findings demonstrate the potential of cross-attention fusion for improving AD diagnosis while maintaining computational efficiency.
Related papers
- 4D Multimodal Co-attention Fusion Network with Latent Contrastive Alignment for Alzheimer's Diagnosis [24.771496672135395]
We propose M2M-AlignNet: a geometry-aware co-attention network with latent alignment for early Alzheimer's diagnosis.
At the core of our approach is a multi-patch-to-multi-patch (M2M) contrastive loss function that quantifies and reduces representational discrepancies.
We conduct extensive experiments to confirm the effectiveness of our method and highlight the correspondance between fMRI and sMRI as AD biomarkers.
arXiv Detail & Related papers (2025-04-23T15:18:55Z) - Latent Diffusion Autoencoders: Toward Efficient and Meaningful Unsupervised Representation Learning in Medical Imaging [41.446379453352534]
Latent Diffusion Autoencoder (LDAE) is a novel encoder-decoder diffusion-based framework for efficient and meaningful unsupervised learning in medical imaging.
This study focuses on Alzheimer disease (AD) using brain MR from the ADNI database as a case study.
arXiv Detail & Related papers (2025-04-11T15:37:46Z) - Toward Robust Early Detection of Alzheimer's Disease via an Integrated Multimodal Learning Approach [5.9091823080038814]
Alzheimer's Disease (AD) is a complex neurodegenerative disorder marked by memory loss, executive dysfunction, and personality changes.
This study introduces an advanced multimodal classification model that integrates clinical, cognitive, neuroimaging, and EEG data.
arXiv Detail & Related papers (2024-08-29T08:26:00Z) - Beyond the Eye: A Relational Model for Early Dementia Detection Using Retinal OCTA Images [42.75763279888966]
We present a novel PolarNet+ that uses retinal optical coherence tomography angiography ( OCTA) to discriminate early-onset Alzheimer's disease (AD) and mild cognitive impairment (MCI) subjects from controls.
Our method first maps OCTA images from Cartesian coordinates to polar coordinates, allowing approximate sub-region calculation.
We then introduce a multi-view module to serialize and analyze the images along three dimensions for comprehensive, clinically useful information extraction.
arXiv Detail & Related papers (2024-08-09T15:10:34Z) - AXIAL: Attention-based eXplainability for Interpretable Alzheimer's Localized Diagnosis using 2D CNNs on 3D MRI brain scans [43.06293430764841]
This study presents an innovative method for Alzheimer's disease diagnosis using 3D MRI designed to enhance the explainability of model decisions.
Our approach adopts a soft attention mechanism, enabling 2D CNNs to extract volumetric representations.
With voxel-level precision, our method identified which specific areas are being paid attention to, identifying these predominant brain regions.
arXiv Detail & Related papers (2024-07-02T16:44:00Z) - Cross-modality Guidance-aided Multi-modal Learning with Dual Attention
for MRI Brain Tumor Grading [47.50733518140625]
Brain tumor represents one of the most fatal cancers around the world, and is very common in children and the elderly.
We propose a novel cross-modality guidance-aided multi-modal learning with dual attention for addressing the task of MRI brain tumor grading.
arXiv Detail & Related papers (2024-01-17T07:54:49Z) - Diagnosing Alzheimer's Disease using Early-Late Multimodal Data Fusion
with Jacobian Maps [1.5501208213584152]
Alzheimer's disease (AD) is a prevalent and debilitating neurodegenerative disorder impacting a large aging population.
We propose an efficient early-late fusion (ELF) approach, which leverages a convolutional neural network for automated feature extraction and random forests.
To tackle the challenge of detecting subtle changes in brain volume, we transform images into the Jacobian domain (JD)
arXiv Detail & Related papers (2023-10-25T19:02:57Z) - Brain Imaging-to-Graph Generation using Adversarial Hierarchical Diffusion Models for MCI Causality Analysis [44.45598796591008]
Brain imaging-to-graph generation (BIGG) framework is proposed to map functional magnetic resonance imaging (fMRI) into effective connectivity for mild cognitive impairment analysis.
The hierarchical transformers in the generator are designed to estimate the noise at multiple scales.
Evaluations of the ADNI dataset demonstrate the feasibility and efficacy of the proposed model.
arXiv Detail & Related papers (2023-05-18T06:54:56Z) - Improving 3D convolutional neural network comprehensibility via
interactive visualization of relevance maps: Evaluation in Alzheimer's
disease [0.8031935951075242]
Convolutional neural networks (CNN) achieve high diagnostic accuracy for detecting Alzheimer's disease (AD) dementia based on magnetic resonance imaging (MRI) scans.
One important reason for this is a lack of model comprehensibility.
We investigated whether models with higher accuracy also rely more on discriminative brain regions predefined by prior knowledge.
arXiv Detail & Related papers (2020-12-18T15:16:50Z) - Multimodal Inductive Transfer Learning for Detection of Alzheimer's
Dementia and its Severity [39.57255380551913]
We present a novel architecture that leverages acoustic, cognitive, and linguistic features to form a multimodal ensemble system.
It uses specialized artificial neural networks with temporal characteristics to detect Alzheimer's dementia (AD) and its severity.
Our system achieves state-of-the-art test accuracy, precision, recall, and F1-score of 83.3% each for AD classification, and state-of-the-art test root mean squared error (RMSE) of 4.60 for MMSE score regression.
arXiv Detail & Related papers (2020-08-30T21:47:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.