Diagnosing Alzheimer's Disease using Early-Late Multimodal Data Fusion
with Jacobian Maps
- URL: http://arxiv.org/abs/2310.16936v2
- Date: Fri, 27 Oct 2023 18:02:42 GMT
- Title: Diagnosing Alzheimer's Disease using Early-Late Multimodal Data Fusion
with Jacobian Maps
- Authors: Yasmine Mustafa and Tie Luo
- Abstract summary: Alzheimer's disease (AD) is a prevalent and debilitating neurodegenerative disorder impacting a large aging population.
We propose an efficient early-late fusion (ELF) approach, which leverages a convolutional neural network for automated feature extraction and random forests.
To tackle the challenge of detecting subtle changes in brain volume, we transform images into the Jacobian domain (JD)
- Score: 1.5501208213584152
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Alzheimer's disease (AD) is a prevalent and debilitating neurodegenerative
disorder impacting a large aging population. Detecting AD in all its
presymptomatic and symptomatic stages is crucial for early intervention and
treatment. An active research direction is to explore machine learning methods
that harness multimodal data fusion to outperform human inspection of medical
scans. However, existing multimodal fusion models have limitations, including
redundant computation, complex architecture, and simplistic handling of missing
data. Moreover, the preprocessing pipelines of medical scans remain
inadequately detailed and are seldom optimized for individual subjects. In this
paper, we propose an efficient early-late fusion (ELF) approach, which
leverages a convolutional neural network for automated feature extraction and
random forests for their competitive performance on small datasets.
Additionally, we introduce a robust preprocessing pipeline that adapts to the
unique characteristics of individual subjects and makes use of whole brain
images rather than slices or patches. Moreover, to tackle the challenge of
detecting subtle changes in brain volume, we transform images into the Jacobian
domain (JD) to enhance both accuracy and robustness in our classification.
Using MRI and CT images from the OASIS-3 dataset, our experiments demonstrate
the effectiveness of the ELF approach in classifying AD into four stages with
an accuracy of 97.19%.
Related papers
- GFE-Mamba: Mamba-based AD Multi-modal Progression Assessment via Generative Feature Extraction from MCI [5.355943545567233]
Alzheimer's Disease (AD) is an irreversible neurodegenerative disorder that often progresses from Mild Cognitive Impairment (MCI)
We introduce GFE-Mamba, a classifier based on Generative Feature Extraction (GFE)
It integrates data from assessment scales, MRI, and PET, enabling deeper multimodal fusion.
Our experimental results demonstrate that the GFE-Mamba model is effective in predicting the conversion from MCI to AD.
arXiv Detail & Related papers (2024-07-22T15:22:33Z) - Leveraging Bi-Focal Perspectives and Granular Feature Integration for Accurate Reliable Early Alzheimer's Detection [0.0]
Alzheimer's disease (AD) is the most common neurodegeneration, annually diagnosed in millions of patients.
Traditional CNNs can extract a good amount of low-level information in an image but fail to extract high-level minuscule particles.
We propose a novel Granular Feature Integration method to combine information extraction at different scales combined with an efficient information flow.
arXiv Detail & Related papers (2024-07-15T17:22:16Z) - Hybridized Convolutional Neural Networks and Long Short-Term Memory for
Improved Alzheimer's Disease Diagnosis from MRI Scans [2.621434923709917]
This study aims to present a hybrid model that combines a CNN model's feature extraction capabilities with an LSTM model's detection capabilities.
The training of the hybrid model involved utilizing the ADNI dataset.
The model achieved a level of accuracy of 98.8%, a sensitivity rate of 100%, and a specificity rate of 76%.
arXiv Detail & Related papers (2024-03-08T14:34:32Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
This work summarizes and strictly observes best practices regarding data handling, experimental design, and model evaluation.
We focus on Alzheimer's Disease (AD) detection, which serves as a paradigmatic example of challenging problem in healthcare.
Within this framework, we train predictive 15 models, considering three different data augmentation strategies and five distinct 3D CNN architectures.
arXiv Detail & Related papers (2023-09-13T10:40:41Z) - Incomplete Multimodal Learning for Complex Brain Disorders Prediction [65.95783479249745]
We propose a new incomplete multimodal data integration approach that employs transformers and generative adversarial networks.
We apply our new method to predict cognitive degeneration and disease outcomes using the multimodal imaging genetic data from Alzheimer's Disease Neuroimaging Initiative cohort.
arXiv Detail & Related papers (2023-05-25T16:29:16Z) - Detecting Dementia from Speech and Transcripts using Transformers [0.0]
Alzheimer's disease (AD) constitutes a neurodegenerative disease with serious consequences to peoples' everyday lives, if it is not diagnosed early since there is no available cure.
Current work has been focused on diagnosing dementia from spontaneous speech.
arXiv Detail & Related papers (2021-10-27T21:00:01Z) - Multimodal Representations Learning and Adversarial Hypergraph Fusion
for Early Alzheimer's Disease Prediction [30.99183477161096]
We propose a novel representation learning and adversarial hypergraph fusion framework for Alzheimer's disease diagnosis.
Our model achieves superior performance on Alzheimer's disease detection compared with other related models.
arXiv Detail & Related papers (2021-07-21T08:08:05Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Fader Networks for domain adaptation on fMRI: ABIDE-II study [68.5481471934606]
We use 3D convolutional autoencoders to build the domain irrelevant latent space image representation and demonstrate this method to outperform existing approaches on ABIDE data.
arXiv Detail & Related papers (2020-10-14T16:50:50Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z) - Detecting Parkinsonian Tremor from IMU Data Collected In-The-Wild using
Deep Multiple-Instance Learning [59.74684475991192]
Parkinson's Disease (PD) is a slowly evolving neuro-logical disease that affects about 1% of the population above 60 years old.
PD symptoms include tremor, rigidity and braykinesia.
We present a method for automatically identifying tremorous episodes related to PD, based on IMU signals captured via a smartphone device.
arXiv Detail & Related papers (2020-05-06T09:02:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.