論文の概要: GenVDM: Generating Vector Displacement Maps From a Single Image
- arxiv url: http://arxiv.org/abs/2503.00605v1
- Date: Sat, 01 Mar 2025 20:11:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:15:31.653507
- Title: GenVDM: Generating Vector Displacement Maps From a Single Image
- Title(参考訳): GenVDM:1枚の画像からベクトル変位マップを生成する
- Authors: Yuezhi Yang, Qimin Chen, Vladimir G. Kim, Siddhartha Chaudhuri, Qixing Huang, Zhiqin Chen,
- Abstract要約: VDM(Vector Displacement Map)の作成法について紹介する。
1つの入力画像が与えられた場合、まずマルチビューの正規写像を生成し、次に新しい再構成パイプラインを通して正規写像からVDMを再構成する。
また、3DオブジェクトからVDMを抽出する効率的なアルゴリズムを提案し、最初の学術的VDMデータセットを示す。
- 参考スコア(独自算出の注目度): 44.800771834829256
- License:
- Abstract: We introduce the first method for generating Vector Displacement Maps (VDMs): parameterized, detailed geometric stamps commonly used in 3D modeling. Given a single input image, our method first generates multi-view normal maps and then reconstructs a VDM from the normals via a novel reconstruction pipeline. We also propose an efficient algorithm for extracting VDMs from 3D objects, and present the first academic VDM dataset. Compared to existing 3D generative models focusing on complete shapes, we focus on generating parts that can be seamlessly attached to shape surfaces. The method gives artists rich control over adding geometric details to a 3D shape. Experiments demonstrate that our approach outperforms existing baselines. Generating VDMs offers additional benefits, such as using 2D image editing to customize and refine 3D details.
- Abstract(参考訳): 本稿では,ベクトル変位マップ(VDM)の生成法について紹介する。
1つの入力画像が与えられた場合、まずマルチビューの正規写像を生成し、次に新しい再構成パイプラインを通して正規写像からVDMを再構成する。
また、3DオブジェクトからVDMを抽出する効率的なアルゴリズムを提案し、最初の学術的VDMデータセットを示す。
完全形状に着目した既存の3D生成モデルと比較して,形状面にシームレスに取り付けられる部品の創出に重点を置いている。
この方法により、アーティストは幾何学的詳細を3Dの形状に追加できる。
実験により、我々のアプローチは既存のベースラインより優れていることが示された。
VDMの生成には、2D画像編集を使用して3Dディテールをカスタマイズ、洗練するなど、さらなるメリットがある。
関連論文リスト
- GeoLRM: Geometry-Aware Large Reconstruction Model for High-Quality 3D Gaussian Generation [65.33726478659304]
GeoLRM(Geometry-Aware Large Restruction Model)は、512kガウスと21の入力画像で11GBのGPUメモリで高品質な資産を予測できる手法である。
従来の作品では、3D構造の本質的な空間性は無視されており、3D画像と2D画像の間の明示的な幾何学的関係は利用されていない。
GeoLRMは、3Dポイントを直接処理し、変形可能なクロスアテンション機構を使用する新しい3D対応トランスフォーマー構造を導入することで、これらの問題に対処する。
論文 参考訳(メタデータ) (2024-06-21T17:49:31Z) - MV2Cyl: Reconstructing 3D Extrusion Cylinders from Multi-View Images [13.255044855902408]
2次元多視点画像から3次元を再構成する新しい手法であるMV2Cylを提案する。
本研究では,2次元スケッチと抽出パラメータ推定において最適な精度で最適な再構成結果を得る。
論文 参考訳(メタデータ) (2024-06-16T08:54:38Z) - Magic-Boost: Boost 3D Generation with Multi-View Conditioned Diffusion [101.15628083270224]
本稿では,高忠実度新鮮映像を合成する多視点拡散モデルを提案する。
次に,得られた粗い結果を精査するための厳密なガイダンスを提供するために,新しい反復更新戦略を導入する。
実験の結果、Magic-Boostは粗いインプットを大幅に強化し、リッチな幾何学的およびテクスチュラルな詳細を持つ高品質な3Dアセットを生成する。
論文 参考訳(メタデータ) (2024-04-09T16:20:03Z) - Controllable Text-to-3D Generation via Surface-Aligned Gaussian Splatting [9.383423119196408]
本稿では,既存の多視点拡散モデルを強化するために設計されたニューラルネットワークアーキテクチャであるMulti-view ControlNet(MVControl)を紹介する。
MVControlは最適化ベースの3D生成のための3D拡散ガイダンスを提供することができる。
効率性を追求するために、一般的に使用される暗黙の表現の代わりに、3Dガウスを表現として採用する。
論文 参考訳(メタデータ) (2024-03-15T02:57:20Z) - 3DMiner: Discovering Shapes from Large-Scale Unannotated Image Datasets [34.610546020800236]
3DMinerは、挑戦的なデータセットから3D形状をマイニングするためのパイプラインである。
本手法は最先端の教師なし3次元再構成技術よりもはるかに優れた結果が得られる。
LAION-5Bデータセットから得られる画像の形状を再構成することにより,3DMinerを組込みデータに適用する方法を示す。
論文 参考訳(メタデータ) (2023-10-29T23:08:19Z) - MvDeCor: Multi-view Dense Correspondence Learning for Fine-grained 3D
Segmentation [91.6658845016214]
そこで本研究では,2次元領域における自己教師型手法を,微細な3次元形状分割作業に活用することを提案する。
複数のビューから3次元形状を描画し、コントラスト学習フレームワーク内に密接な対応学習タスクを設置する。
その結果、学習された2次元表現はビュー不変であり、幾何学的に一貫性がある。
論文 参考訳(メタデータ) (2022-08-18T00:48:15Z) - 3DStyleNet: Creating 3D Shapes with Geometric and Texture Style
Variations [81.45521258652734]
本稿では,3次元オブジェクトの幾何学的・テクスチャ的バリエーションを多用する手法を提案する。
提案手法は,多くの新しいスタイルの形状を作成でき,その結果,無駄な3Dコンテンツ作成とスタイルウェアデータ拡張を実現している。
論文 参考訳(メタデータ) (2021-08-30T02:28:31Z) - Improved Modeling of 3D Shapes with Multi-view Depth Maps [48.8309897766904]
CNNを用いて3次元形状をモデル化するための汎用フレームワークを提案する。
オブジェクトの1つの深度画像だけで、3Dオブジェクトの高密度な多視点深度マップ表現を出力できる。
論文 参考訳(メタデータ) (2020-09-07T17:58:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。