論文の概要: The Hidden Cost of Waiting for Accurate Predictions
- arxiv url: http://arxiv.org/abs/2503.00650v1
- Date: Sat, 01 Mar 2025 22:50:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:14:24.265904
- Title: The Hidden Cost of Waiting for Accurate Predictions
- Title(参考訳): 正確な予測のための待ち行列の隠れコスト
- Authors: Ali Shirali, Ariel Procaccia, Rediet Abebe,
- Abstract要約: 予測精度は時間とともに向上するが、平均的なランキング損失は悪化する可能性がある。
この現象の原動力は不平等である。
- 参考スコア(独自算出の注目度): 10.295754142142686
- License:
- Abstract: Algorithmic predictions are increasingly informing societal resource allocations by identifying individuals for targeting. Policymakers often build these systems with the assumption that by gathering more observations on individuals, they can improve predictive accuracy and, consequently, allocation efficiency. An overlooked yet consequential aspect of prediction-driven allocations is that of timing. The planner has to trade off relying on earlier and potentially noisier predictions to intervene before individuals experience undesirable outcomes, or they may wait to gather more observations to make more precise allocations. We examine this tension using a simple mathematical model, where the planner collects observations on individuals to improve predictions over time. We analyze both the ranking induced by these predictions and optimal resource allocation. We show that though individual prediction accuracy improves over time, counter-intuitively, the average ranking loss can worsen. As a result, the planner's ability to improve social welfare can decline. We identify inequality as a driving factor behind this phenomenon. Our findings provide a nuanced perspective and challenge the conventional wisdom that it is preferable to wait for more accurate predictions to ensure the most efficient allocations.
- Abstract(参考訳): アルゴリズムによる予測は、ターゲティングする個人を特定することによって、社会的リソース割り当てをますます高めている。
政策立案者は、個人の観察をより多く集めることで、予測精度を向上し、その結果、割り当て効率を向上できると仮定して、これらのシステムを構築することが多い。
予測駆動アロケーションの見過ごされがちな側面は、タイミングのそれである。
計画立案者は、個人が望ましくない結果を経験する前に介入する、あるいはより正確な割り当てを行うためにより多くの観測結果を集めるのを待つ前に、より早く、潜在的に騒がしい予測に頼らざるを得ない。
簡単な数学的モデルを用いてこのテンションを検証し、プランナーは個人についての観察を収集し、時間とともに予測を改善する。
これらの予測によって誘導されるランキングと最適な資源配分の両方を解析する。
個人の予測精度は時間とともに向上するが、対意的に、平均的なランキング損失は悪化する可能性がある。
その結果、プランナーの社会福祉改善能力は低下する。
この現象の原動力は不平等である。
この知見は, より正確な予測を待ち, 最適なアロケーションを確実にすることが望ましいという従来の知恵に疑問を呈するものである。
関連論文リスト
- Hybrid Forecasting of Geopolitical Events [71.73737011120103]
SAGEは、人間と機械が生成した予測を組み合わせたハイブリッド予測システムである。
このシステムは、確率と評価されたスキルに基づいて、人間と機械の予測の重み付けを集約する。
機械による予測にアクセスできる熟練した予測者は、過去のデータしか見ていない者よりも優れていた。
論文 参考訳(メタデータ) (2024-12-14T22:09:45Z) - Performative Prediction on Games and Mechanism Design [69.7933059664256]
エージェントが過去の正確性に基づいて予測を信頼するかを判断する集団リスクジレンマについて検討する。
予測が集合的な結果を形成するにつれて、社会福祉は関心の指標として自然に現れる。
よりよいトレードオフを実現し、それらをメカニズム設計に使用する方法を示します。
論文 参考訳(メタデータ) (2024-08-09T16:03:44Z) - STEMO: Early Spatio-temporal Forecasting with Multi-Objective Reinforcement Learning [11.324029387605888]
本稿では,多目的強化学習に基づく早期時相予測モデルを提案する。
提案手法は,3つの大規模実世界のデータセットに対して優れた性能を示す。
論文 参考訳(メタデータ) (2024-06-06T13:03:51Z) - Best of Many in Both Worlds: Online Resource Allocation with Predictions under Unknown Arrival Model [16.466711636334587]
オンライン意思決定者は、到着や要求など、将来の変数に関する予測を得ることが多い。
意思決定者にとって予測精度は未知であるため、予測に盲目的に追従することは有害である。
我々は未知の予測精度に頑健な方法で予測を利用するアルゴリズムを開発した。
論文 参考訳(メタデータ) (2024-02-21T04:57:32Z) - Performative Time-Series Forecasting [71.18553214204978]
我々は,機械学習の観点から,パフォーマンス時系列予測(PeTS)を定式化する。
本稿では,予測分布シフトに対する遅延応答の概念を活用する新しい手法であるFeature Performative-Shifting(FPS)を提案する。
新型コロナウイルスの複数の時系列モデルと交通予報タスクを用いた総合的な実験を行った。
論文 参考訳(メタデータ) (2023-10-09T18:34:29Z) - Incentivizing honest performative predictions with proper scoring rules [4.932130498861987]
その予測が下された後に専門家の信念を正確に反映していれば、予測は固定点であると言える。
二項予測に対して、専門家の予測が結果に与える影響が限定されている場合、最適なレポートが任意に固定点に近づくスコアリングルールを定義することができる。
論文 参考訳(メタデータ) (2023-05-28T00:53:26Z) - What Should I Know? Using Meta-gradient Descent for Predictive Feature
Discovery in a Single Stream of Experience [63.75363908696257]
計算強化学習は、未来の感覚の予測を通じて、エージェントの世界の知覚を構築しようとする。
この一連の作業において、オープンな課題は、エージェントがどの予測が意思決定を最も支援できるかを、無限に多くの予測から決定することである。
本稿では,エージェントが何を予測するかを学習するメタ段階的な降下過程,(2)選択した予測の見積もり,3)将来の報酬を最大化するポリシーを生成する方法を紹介する。
論文 参考訳(メタデータ) (2022-06-13T21:31:06Z) - Learning to Predict Trustworthiness with Steep Slope Loss [69.40817968905495]
本研究では,現実の大規模データセットにおける信頼性の予測問題について検討する。
我々は、先行技術損失関数で訓練された信頼性予測器が、正しい予測と誤った予測の両方を信頼に値するものとみなす傾向があることを観察する。
そこで我々は,2つのスライド状の曲線による不正確な予測から,特徴w.r.t.正しい予測を分離する,新たな急勾配損失を提案する。
論文 参考訳(メタデータ) (2021-09-30T19:19:09Z) - Right Decisions from Wrong Predictions: A Mechanism Design Alternative
to Individual Calibration [107.15813002403905]
意思決定者は、しばしば不完全な確率予測に頼る必要がある。
本稿では,予測ユーティリティが実際に取得したユーティリティと一致することを保証する補償機構を提案する。
本研究では、乗客が飛行遅延確率に基づいて、個々の旅行計画をどのように確実に最適化できるかを示すアプリケーションを示す。
論文 参考訳(メタデータ) (2020-11-15T08:22:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。