A new practical and effective source-independent full-waveform inversion with a velocity-distribution supported deep image prior: Applications to two real datasets
- URL: http://arxiv.org/abs/2503.00658v1
- Date: Sat, 01 Mar 2025 23:15:43 GMT
- Title: A new practical and effective source-independent full-waveform inversion with a velocity-distribution supported deep image prior: Applications to two real datasets
- Authors: Chao Song, Tariq Alkhalifah, Umair Bin Waheed, Silin Wang, Cai Liu,
- Abstract summary: Full-waveform inversion (FWI) is an advanced technique for reconstructing high-resolution subsurface physical parameters.<n>We introduce a correlation-based source-independent objective function for FWI that aims to mitigate source uncertainty and amplitude dependency.<n>We demonstrate the superiority of our proposed method using synthetic data from benchmark velocity models and two real datasets.
- Score: 6.802692977157491
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Full-waveform inversion (FWI) is an advanced technique for reconstructing high-resolution subsurface physical parameters by progressively minimizing the discrepancy between observed and predicted seismic data. However, conventional FWI encounters challenges in real data applications, primarily due to its conventional objective of direct measurements of the data misfit. Accurate estimation of the source wavelet is essential for effective data fitting, alongside the need for low-frequency data and a reasonable initial model to prevent cycle skipping. Additionally, wave equation solvers often struggle to accurately simulate the amplitude of observed data in real applications. To address these challenges, we introduce a correlation-based source-independent objective function for FWI that aims to mitigate source uncertainty and amplitude dependency, which effectively enhances its practicality for real data applications. We develop a deep-learning framework constrained by this new objective function with a velocity-distribution supported deep image prior, which reparameterizes velocity inversion into trainable parameters within an autoencoder, thereby reducing the nonlinearity in the conventional FWI's objective function. We demonstrate the superiority of our proposed method using synthetic data from benchmark velocity models and, more importantly, two real datasets. These examples highlight its effectiveness and practicality even under challenging conditions, such as missing low frequencies, a crude initial velocity model, and an incorrect source wavelet.
Related papers
- PreAdaptFWI: Pretrained-Based Adaptive Residual Learning for Full-Waveform Inversion Without Dataset Dependency [8.719356558714246]
Full-waveform inversion (FWI) is a method that utilizes seismic data to invert the physical parameters of subsurface media.<n>Due to its ill-posed nature, FWI is susceptible to getting trapped in local minima.<n>Various research efforts have attempted to combine neural networks with FWI to stabilize the inversion process.
arXiv Detail & Related papers (2025-02-17T15:30:17Z) - DispFormer: Pretrained Transformer for Flexible Dispersion Curve Inversion from Global Synthesis to Regional Applications [59.488352977043974]
This study proposes DispFormer, a transformer-based neural network for inverting the $v_s$ profile from Rayleigh-wave phase and group dispersion curves.<n>Results indicate that zero-shot DispFormer, even without any labeled data, produces inversion profiles that match well with the ground truth.
arXiv Detail & Related papers (2025-01-08T09:08:24Z) - ResFlow: Fine-tuning Residual Optical Flow for Event-based High Temporal Resolution Motion Estimation [50.80115710105251]
Event cameras hold significant promise for high-temporal-resolution (HTR) motion estimation.<n>We propose a residual-based paradigm for estimating HTR optical flow with event data.
arXiv Detail & Related papers (2024-12-12T09:35:47Z) - Optimal Transport-Based Displacement Interpolation with Data Augmentation for Reduced Order Modeling of Nonlinear Dynamical Systems [0.0]
We present a novel reduced-order Model (ROM) that exploits optimal transport theory and displacement to enhance the representation of nonlinear dynamics in complex systems.
We show improved accuracy and efficiency in predicting complex system behaviors, indicating the potential of this approach for a wide range of applications in computational physics and engineering.
arXiv Detail & Related papers (2024-11-13T16:29:33Z) - Integrating Physics of the Problem into Data-Driven Methods to Enhance Elastic Full-Waveform Inversion with Uncertainty Quantification [0.0]
Full-Waveform Inversion (FWI) is a nonlinear iterative seismic imaging technique.
FWI can produce detailed estimates of subsurface geophysical properties.
The strong nonlinearity of FWI can trap the optimization in local minima.
arXiv Detail & Related papers (2024-06-04T11:30:40Z) - Steerable Conditional Diffusion for Out-of-Distribution Adaptation in Medical Image Reconstruction [75.91471250967703]
We introduce a novel sampling framework called Steerable Conditional Diffusion.<n>This framework adapts the diffusion model, concurrently with image reconstruction, based solely on the information provided by the available measurement.<n>We achieve substantial enhancements in out-of-distribution performance across diverse imaging modalities.
arXiv Detail & Related papers (2023-08-28T08:47:06Z) - Analysis and Optimization of Wireless Federated Learning with Data
Heterogeneity [72.85248553787538]
This paper focuses on performance analysis and optimization for wireless FL, considering data heterogeneity, combined with wireless resource allocation.
We formulate the loss function minimization problem, under constraints on long-term energy consumption and latency, and jointly optimize client scheduling, resource allocation, and the number of local training epochs (CRE)
Experiments on real-world datasets demonstrate that the proposed algorithm outperforms other benchmarks in terms of the learning accuracy and energy consumption.
arXiv Detail & Related papers (2023-08-04T04:18:01Z) - Low-Light Image Enhancement with Wavelet-based Diffusion Models [50.632343822790006]
Diffusion models have achieved promising results in image restoration tasks, yet suffer from time-consuming, excessive computational resource consumption, and unstable restoration.
We propose a robust and efficient Diffusion-based Low-Light image enhancement approach, dubbed DiffLL.
arXiv Detail & Related papers (2023-06-01T03:08:28Z) - Machine learning for phase-resolved reconstruction of nonlinear ocean
wave surface elevations from sparse remote sensing data [37.69303106863453]
We propose a novel approach for phase-resolved wave surface reconstruction using neural networks.
Our approach utilizes synthetic yet highly realistic training data on uniform one-dimensional grids.
arXiv Detail & Related papers (2023-05-18T12:30:26Z) - Phase Aberration Correction without Reference Data: An Adaptive Mixed
Loss Deep Learning Approach [3.647138233493735]
We propose a deep learning-based method that does not require reference data to compensate for the phase aberration effect.
We demonstrate that a conventional loss function such as mean square error is inadequate for training the network to achieve optimal performance.
arXiv Detail & Related papers (2023-03-10T07:11:48Z) - Efficient Graph Neural Network Inference at Large Scale [54.89457550773165]
Graph neural networks (GNNs) have demonstrated excellent performance in a wide range of applications.
Existing scalable GNNs leverage linear propagation to preprocess the features and accelerate the training and inference procedure.
We propose a novel adaptive propagation order approach that generates the personalized propagation order for each node based on its topological information.
arXiv Detail & Related papers (2022-11-01T14:38:18Z) - Real Time Speech Enhancement in the Waveform Domain [99.02180506016721]
We present a causal speech enhancement model working on the raw waveform that runs in real-time on a laptop CPU.
The proposed model is based on an encoder-decoder architecture with skip-connections.
It is capable of removing various kinds of background noise including stationary and non-stationary noises.
arXiv Detail & Related papers (2020-06-23T09:19:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.