Generative Artificial Intelligence for Academic Research: Evidence from Guidance Issued for Researchers by Higher Education Institutions in the United States
- URL: http://arxiv.org/abs/2503.00664v1
- Date: Sat, 01 Mar 2025 23:34:02 GMT
- Title: Generative Artificial Intelligence for Academic Research: Evidence from Guidance Issued for Researchers by Higher Education Institutions in the United States
- Authors: Amrita Ganguly, Aditya Johri, Areej Ali, Nora McDonald,
- Abstract summary: generative AI (GenAI) has signaled a significant shift in research activities.<n>This has raised questions about how to balance the seemingly productive uses of GenAI with ethical concerns.<n>To address these concerns, many Higher Education Institutions (HEIs) have released institutional guidance for researchers.
- Score: 4.06279597585806
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The recent development and use of generative AI (GenAI) has signaled a significant shift in research activities such as brainstorming, proposal writing, dissemination, and even reviewing. This has raised questions about how to balance the seemingly productive uses of GenAI with ethical concerns such as authorship and copyright issues, use of biased training data, lack of transparency, and impact on user privacy. To address these concerns, many Higher Education Institutions (HEIs) have released institutional guidance for researchers. To better understand the guidance that is being provided we report findings from a thematic analysis of guidelines from thirty HEIs in the United States that are classified as R1 or 'very high research activity.' We found that guidance provided to researchers: (1) asks them to refer to external sources of information such as funding agencies and publishers to keep updated and use institutional resources for training and education; (2) asks them to understand and learn about specific GenAI attributes that shape research such as predictive modeling, knowledge cutoff date, data provenance, and model limitations, and educate themselves about ethical concerns such as authorship, attribution, privacy, and intellectual property issues; and (3) includes instructions on how to acknowledge sources and disclose the use of GenAI, how to communicate effectively about their GenAI use, and alerts researchers to long term implications such as over reliance on GenAI, legal consequences, and risks to their institutions from GenAI use. Overall, guidance places the onus of compliance on individual researchers making them accountable for any lapses, thereby increasing their responsibility.
Related papers
- Media and responsible AI governance: a game-theoretic and LLM analysis [61.132523071109354]
This paper investigates the interplay between AI developers, regulators, users, and the media in fostering trustworthy AI systems.
Using evolutionary game theory and large language models (LLMs), we model the strategic interactions among these actors under different regulatory regimes.
arXiv Detail & Related papers (2025-03-12T21:39:38Z) - From Hypothesis to Publication: A Comprehensive Survey of AI-Driven Research Support Systems [40.10425916520717]
In recent years, the rapid development of artificial intelligence (AI) technologies has inspired researchers to explore how AI can accelerate and enhance research.<n>This paper presents a systematic review of the progress in this domain.<n>We organize relevant studies into three main categories: hypothesis formulation, hypothesis validation, and manuscript publication.
arXiv Detail & Related papers (2025-03-03T11:27:13Z) - Engineering Educators' Perspectives on the Impact of Generative AI in Higher Education [4.06279597585806]
This study reports findings from a survey of engineering educators on their use of and perspectives toward generative AI.<n>We asked them about their use of and comfort with GenAI, their overall perspectives on GenAI, the challenges and potential harms of using it for teaching, learning, and research, and examined whether their approach to using and integrating GenAI in their classroom influenced their experiences with GenAI and perceptions of it.
arXiv Detail & Related papers (2025-02-01T21:29:53Z) - Research Integrity and GenAI: A Systematic Analysis of Ethical Challenges Across Research Phases [0.0]
The rapid development and use of generative AI (GenAI) tools in academia presents complex and multifaceted ethical challenges for its users.<n>This study aims to examine the ethical concerns arising from the use of GenAI across different phases of research.
arXiv Detail & Related papers (2024-12-13T13:31:45Z) - Navigating Ethical Challenges in Generative AI-Enhanced Research: The ETHICAL Framework for Responsible Generative AI Use [0.0]
The rapid adoption of generative artificial intelligence (GenAI) in research presents both opportunities and ethical challenges.
This paper develops the ETHICAL framework, which is a practical guide for responsible GenAI use in research.
arXiv Detail & Related papers (2024-12-11T05:49:11Z) - "So what if I used GenAI?" -- Implications of Using Cloud-based GenAI in Software Engineering Research [0.0]
This paper sheds light on the various research aspects in which GenAI is used, thus raising awareness of its legal implications to novice and budding researchers.<n>We summarize key aspects regarding our current knowledge that every software researcher involved in using GenAI should be aware of to avoid critical mistakes that may expose them to liability claims.
arXiv Detail & Related papers (2024-12-10T06:18:15Z) - Early Adoption of Generative Artificial Intelligence in Computing Education: Emergent Student Use Cases and Perspectives in 2023 [38.83649319653387]
There is limited prior research on computing students' use and perceptions of GenAI.
We surveyed all computer science majors in a small engineering-focused R1 university.
We discuss the impact of our findings on the emerging conversation around GenAI and education.
arXiv Detail & Related papers (2024-11-17T20:17:47Z) - Hey GPT, Can You be More Racist? Analysis from Crowdsourced Attempts to Elicit Biased Content from Generative AI [41.96102438774773]
This work presents the findings from a university-level competition, which challenged participants to design prompts for eliciting biased outputs from GenAI tools.
We quantitatively and qualitatively analyze the competition submissions and identify a diverse set of biases in GenAI and strategies employed by participants to induce bias in GenAI.
arXiv Detail & Related papers (2024-10-20T18:44:45Z) - Environment Scan of Generative AI Infrastructure for Clinical and Translational Science [35.90108933392196]
This study reports a comprehensive scan of the generative AI (GenAI) infrastructure in the national network for clinical and translational science across 36 institutions.
This research explores the current status of GenAI integration, focusing on stakeholder roles, governance structures, and ethical considerations.
arXiv Detail & Related papers (2024-09-28T01:53:13Z) - On Evaluating Explanation Utility for Human-AI Decision Making in NLP [39.58317527488534]
We review existing metrics suitable for application-grounded evaluation.
We demonstrate the importance of reassessing the state of the art to form and study human-AI teams.
arXiv Detail & Related papers (2024-07-03T23:53:27Z) - Harnessing AI for efficient analysis of complex policy documents: a case study of Executive Order 14110 [44.99833362998488]
Policy documents, such as legislation, regulations, and executive orders, are crucial in shaping society.
This study aims to evaluate the potential of AI in streamlining policy analysis and to identify the strengths and limitations of current AI approaches.
arXiv Detail & Related papers (2024-06-10T11:19:28Z) - Generative AI in Higher Education: Seeing ChatGPT Through Universities' Policies, Resources, and Guidelines [11.470910427306569]
This study analyzes academic policies and guidelines established by top-ranked U.S. universities regarding the use of GenAI.
Results show that the majority of these universities adopt an open but cautious approach towards GenAI.
Findings provide four practical implications for educators in teaching practices.
arXiv Detail & Related papers (2023-12-08T18:33:11Z) - Report of the 1st Workshop on Generative AI and Law [78.62063815165968]
This report presents the takeaways of the inaugural Workshop on Generative AI and Law (GenLaw)
A cross-disciplinary group of practitioners and scholars from computer science and law convened to discuss the technical, doctrinal, and policy challenges presented by law for Generative AI.
arXiv Detail & Related papers (2023-11-11T04:13:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.