From Recall to Reasoning: Automated Question Generation for Deeper Math Learning through Large Language Models
- URL: http://arxiv.org/abs/2505.11899v1
- Date: Sat, 17 May 2025 08:30:10 GMT
- Title: From Recall to Reasoning: Automated Question Generation for Deeper Math Learning through Large Language Models
- Authors: Yongan Yu, Alexandre Krantz, Nikki G. Lobczowski,
- Abstract summary: We investigated the first steps for optimizing content creation for advanced math.<n>We looked at the ability of GenAI to produce high-quality practice problems that are relevant to the course content.
- Score: 44.99833362998488
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Educators have started to turn to Generative AI (GenAI) to help create new course content, but little is known about how they should do so. In this project, we investigated the first steps for optimizing content creation for advanced math. In particular, we looked at the ability of GenAI to produce high-quality practice problems that are relevant to the course content. We conducted two studies to: (1) explore the capabilities of current versions of publicly available GenAI and (2) develop an improved framework to address the limitations we found. Our results showed that GenAI can create math problems at various levels of quality with minimal support, but that providing examples and relevant content results in better quality outputs. This research can help educators decide the ideal way to adopt GenAI in their workflows, to create more effective educational experiences for students.
Related papers
- Using Generative AI in Software Design Education: An Experience Report [0.6827423171182154]
Students were required to use GenAI to help complete a team-based assignment.<n>Students identified numerous ways ChatGPT helped them in their design process.<n>We identified several key lessons for educators in how to deploy GenAI in a software design class effectively.
arXiv Detail & Related papers (2025-06-26T18:40:16Z) - Encouraging Students' Responsible Use of GenAI in Software Engineering Education: A Causal Model and Two Institutional Applications [1.1511012020557325]
generative AI (GenAI) tools such as ChatGPT and GitHub Copilot become pervasive in education.<n>Concerns are rising about students using them to complete rather than learn from coursework.<n>This paper proposes and empirically applies a causal model to help educators scaffold responsible GenAI use in Software Engineering education.
arXiv Detail & Related papers (2025-05-31T19:27:40Z) - Experiences with Content Development and Assessment Design in the Era of GenAI [0.032771631221674334]
The advancement in GenAI has revolutionised several aspects of education, especially subject and assessment design.<n>The paper intends to determine how effectively GenAI can design a subject, including lectures, labs and assessments, using prompts and custom-based training.
arXiv Detail & Related papers (2025-02-28T05:05:15Z) - Beyond the Hype: A Comprehensive Review of Current Trends in Generative AI Research, Teaching Practices, and Tools [4.352985782794601]
In 2024, new research started to emerge on the effects of GenAI usage in the computing classroom.<n>New data involve the use of GenAI to support classroom instruction at scale and to teach students how to code with GenAI.<n>New class of tools is emerging that can provide personalized feedback to students on their programming assignments or teach both programming and prompting skills at the same time.
arXiv Detail & Related papers (2024-12-19T11:01:11Z) - Scaling of Search and Learning: A Roadmap to Reproduce o1 from Reinforcement Learning Perspective [77.94874338927492]
OpenAI has claimed that the main techinique behinds o1 is the reinforcement learning.<n>This paper analyzes the roadmap to achieving o1 from the perspective of reinforcement learning.
arXiv Detail & Related papers (2024-12-18T18:24:47Z) - Model-based Maintenance and Evolution with GenAI: A Look into the Future [47.93555901495955]
We argue that Generative Artificial Intelligence (GenAI) can be used as a means to address the limitations of Model-Based Engineering (MBM&E)
We propose that GenAI can be used in MBM&E for: reducing engineers' learning curve, maximizing efficiency with recommendations, or serving as a reasoning tool to understand domain problems.
arXiv Detail & Related papers (2024-07-09T23:13:26Z) - Genetic Auto-prompt Learning for Pre-trained Code Intelligence Language Models [54.58108387797138]
We investigate the effectiveness of prompt learning in code intelligence tasks.
Existing automatic prompt design methods are very limited to code intelligence tasks.
We propose Genetic Auto Prompt (GenAP) which utilizes an elaborate genetic algorithm to automatically design prompts.
arXiv Detail & Related papers (2024-03-20T13:37:00Z) - Identifying and Mitigating the Security Risks of Generative AI [179.2384121957896]
This paper reports the findings of a workshop held at Google on the dual-use dilemma posed by GenAI.
GenAI can be used just as well by attackers to generate new attacks and increase the velocity and efficacy of existing attacks.
We discuss short-term and long-term goals for the community on this topic.
arXiv Detail & Related papers (2023-08-28T18:51:09Z) - A Model for Integrating Generative AI into Course Content Development [0.0]
"GAIDE" is a novel framework for using Generative AI (GenAI) to enhance educational content creation.
It aims to streamline content development, encourage the creation of dynamic materials, and demonstrate GenAI's utility in instructional design.
arXiv Detail & Related papers (2023-08-23T17:47:35Z) - Innovating Computer Programming Pedagogy: The AI-Lab Framework for
Generative AI Adoption [0.0]
We introduce "AI-Lab," a framework for guiding students in effectively leveraging GenAI within core programming courses.
By identifying and rectifying GenAI's errors, students enrich their learning process.
For educators, AI-Lab provides mechanisms to explore students' perceptions of GenAI's role in their learning experience.
arXiv Detail & Related papers (2023-08-23T17:20:37Z) - A Comprehensive Survey of AI-Generated Content (AIGC): A History of
Generative AI from GAN to ChatGPT [63.58711128819828]
ChatGPT and other Generative AI (GAI) techniques belong to the category of Artificial Intelligence Generated Content (AIGC)
The goal of AIGC is to make the content creation process more efficient and accessible, allowing for the production of high-quality content at a faster pace.
arXiv Detail & Related papers (2023-03-07T20:36:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.