論文の概要: Towards hyperparameter-free optimization with differential privacy
- arxiv url: http://arxiv.org/abs/2503.00703v1
- Date: Sun, 02 Mar 2025 02:59:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:27:08.013134
- Title: Towards hyperparameter-free optimization with differential privacy
- Title(参考訳): 差分プライバシーを用いたハイパーパラメータフリー最適化に向けて
- Authors: Zhiqi Bu, Ruixuan Liu,
- Abstract要約: 差分プライバシー(DP)は、ディープラーニングモデルをトレーニングする際のトレーニングデータを保護するプライバシー保護パラダイムである。
本研究では,任意のモデルを対象としたDP最適化に自動学習率スケジュールを適用し,各種言語および視覚タスクにおける最先端のDP性能を実現する。
- 参考スコア(独自算出の注目度): 9.193537596304669
- License:
- Abstract: Differential privacy (DP) is a privacy-preserving paradigm that protects the training data when training deep learning models. Critically, the performance of models is determined by the training hyperparameters, especially those of the learning rate schedule, thus requiring fine-grained hyperparameter tuning on the data. In practice, it is common to tune the learning rate hyperparameters through the grid search that (1) is computationally expensive as multiple runs are needed, and (2) increases the risk of data leakage as the selection of hyperparameters is data-dependent. In this work, we adapt the automatic learning rate schedule to DP optimization for any models and optimizers, so as to significantly mitigate or even eliminate the cost of hyperparameter tuning when applied together with automatic per-sample gradient clipping. Our hyperparameter-free DP optimization is almost as computationally efficient as the standard non-DP optimization, and achieves state-of-the-art DP performance on various language and vision tasks.
- Abstract(参考訳): 差分プライバシー(DP)は、ディープラーニングモデルをトレーニングする際のトレーニングデータを保護するプライバシー保護パラダイムである。
重要な点として、モデルの性能はトレーニングハイパーパラメータ、特に学習速度スケジュールによって決定されるため、データに微粒なハイパーパラメータチューニングが必要となる。
実際には,(1)複数のランニングが必要な場合,(1)計算コストが高く,(2)ハイパーパラメータの選択がデータに依存しているため,データ漏洩のリスクが高くなる,というグリッドサーチを通じて,学習率のハイパーパラメータをチューニングすることが一般的である。
本研究では,任意のモデルやオプティマイザに対するDP最適化に自動学習率スケジュールを適用することで,サンプルごとの勾配クリッピングを併用した場合のハイパーパラメータチューニングコストを大幅に軽減する,あるいは削減する。
我々の超パラメータフリーDP最適化は、標準の非DP最適化と同じくらい計算効率が良く、様々な言語や視覚タスクで最先端のDP性能を実現する。
関連論文リスト
- DiSK: Differentially Private Optimizer with Simplified Kalman Filter for Noise Reduction [57.83978915843095]
本稿では,微分プライベート勾配の性能を著しく向上する新しいフレームワークであるDiSKを紹介する。
大規模トレーニングの実用性を確保するため,Kalmanフィルタプロセスを簡素化し,メモリと計算要求を最小化する。
論文 参考訳(メタデータ) (2024-10-04T19:30:39Z) - Adaptive Preference Scaling for Reinforcement Learning with Human Feedback [103.36048042664768]
人間からのフィードバックからの強化学習(RLHF)は、AIシステムと人間の価値を合わせるための一般的なアプローチである。
本稿では,分散ロバスト最適化(DRO)に基づく適応的優先損失を提案する。
提案手法は多用途であり,様々な選好最適化フレームワークに容易に適用可能である。
論文 参考訳(メタデータ) (2024-06-04T20:33:22Z) - AdaLomo: Low-memory Optimization with Adaptive Learning Rate [59.64965955386855]
大規模言語モデルに対する適応学習率(AdaLomo)を用いた低メモリ最適化を提案する。
AdaLomoはAdamWと同等の結果を得ると同時に、メモリ要件を大幅に削減し、大きな言語モデルをトレーニングするためのハードウェア障壁を低くする。
論文 参考訳(メタデータ) (2023-10-16T09:04:28Z) - DP-HyPO: An Adaptive Private Hyperparameter Optimization Framework [31.628466186344582]
適応'のプライベートハイパーパラメータ最適化のための先駆的フレームワークであるDP-HyPOを紹介する。
フレームワークの総合的な差分プライバシー分析を提供する。
本研究では,DP-HyPOが実世界の多様なデータセットに対して有効であることを示す。
論文 参考訳(メタデータ) (2023-06-09T07:55:46Z) - Hyperparameter Optimization through Neural Network Partitioning [11.6941692990626]
本稿では,ニューラルネットワークにおけるハイパーパラメータの最適化をシンプルかつ効率的に行う方法を提案する。
本手法では,トレーニングデータとニューラルネットワークモデルをデータシャードとパラメータ分割に$K$に分割する。
我々は、この目的を単一のトレーニングランで様々なハイパーパラメータを最適化するために適用できることを実証した。
論文 参考訳(メタデータ) (2023-04-28T11:24:41Z) - A New Linear Scaling Rule for Private Adaptive Hyperparameter Optimization [57.450449884166346]
本稿では,HPOのプライバシコストを考慮した適応型HPO法を提案する。
我々は22のベンチマークタスク、コンピュータビジョンと自然言語処理、事前学習と微調整で最先端のパフォーマンスを得る。
論文 参考訳(メタデータ) (2022-12-08T18:56:37Z) - AUTOMATA: Gradient Based Data Subset Selection for Compute-Efficient
Hyper-parameter Tuning [72.54359545547904]
ハイパーパラメータチューニングのための勾配に基づくサブセット選択フレームワークを提案する。
ハイパーパラメータチューニングに勾配ベースのデータサブセットを用いることで、3$times$-30$times$のターンアラウンド時間とスピードアップが大幅に向上することを示す。
論文 参考訳(メタデータ) (2022-03-15T19:25:01Z) - Automatic tuning of hyper-parameters of reinforcement learning
algorithms using Bayesian optimization with behavioral cloning [0.0]
強化学習(RL)では、学習エージェントが収集したデータの情報内容は多くのハイパーパラメータの設定に依存する。
本研究では,ベイズ最適化を用いた自律的ハイパーパラメータ設定手法を提案する。
実験は、他の手作業による調整や最適化ベースのアプローチと比較して、有望な結果を示している。
論文 参考訳(メタデータ) (2021-12-15T13:10:44Z) - The Role of Adaptive Optimizers for Honest Private Hyperparameter
Selection [12.38071940409141]
標準合成ツールは、多くの設定において、より高度な技術よりも優れていることを示す。
我々は、新しいより効率的なツールを設計するために、DP設定におけるAdamの制限的な振る舞いを描きます。
論文 参考訳(メタデータ) (2021-11-09T01:56:56Z) - Online hyperparameter optimization by real-time recurrent learning [57.01871583756586]
ニューラルネットワーク(rnn)におけるハイパーパラメータ最適化とパラメータ学習の類似性を活用した。
RNNのための学習済みのオンライン学習アルゴリズムのファミリーを適応させ、ハイパーパラメータとネットワークパラメータを同時に調整します。
この手順は、通常の方法に比べて、ウォールクロック時間のほんの少しで、体系的に一般化性能が向上する。
論文 参考訳(メタデータ) (2021-02-15T19:36:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。