Task-Agnostic Guided Feature Expansion for Class-Incremental Learning
- URL: http://arxiv.org/abs/2503.00823v1
- Date: Sun, 02 Mar 2025 09:56:50 GMT
- Title: Task-Agnostic Guided Feature Expansion for Class-Incremental Learning
- Authors: Bowen Zheng, Da-Wei Zhou, Han-Jia Ye, De-Chuan Zhan,
- Abstract summary: The ability to learn new concepts while preserve the learned knowledge is desirable for learning systems in Class-Incremental Learning (CIL)<n>Recently, feature expansion of the model become a prevalent solution for CIL, where the old features are fixed during the training of the new task while new features are expanded for the new tasks.<n>We propose a framework called Task-Agnostic Guided Feature Expansion (TagFex) to promote the learning and transferring of diverse features across tasks.
- Score: 59.78858949137853
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The ability to learn new concepts while preserve the learned knowledge is desirable for learning systems in Class-Incremental Learning (CIL). Recently, feature expansion of the model become a prevalent solution for CIL, where the old features are fixed during the training of the new task while new features are expanded for the new tasks. However, such task-specific features learned from the new task may collide with the old features, leading to misclassification between tasks. Therefore, the expanded model is often encouraged to capture diverse features from the new task, aiming to avoid such collision. However, the existing solution is largely restricted to the samples from the current task, because of the poor accessibility to previous samples. To promote the learning and transferring of diverse features across tasks, we propose a framework called Task-Agnostic Guided Feature Expansion (TagFex). Firstly, it captures task-agnostic features continually with a separate model, providing extra task-agnostic features for subsequent tasks. Secondly, to obtain useful features from the task-agnostic model for the current task, it aggregates the task-agnostic features with the task-specific feature using a merge attention. Then the aggregated feature is transferred back into the task-specific feature for inference, helping the task-specific model capture diverse features. Extensive experiments show the effectiveness and superiority of TagFex on various CIL settings. Code is available at https://github.com/bwnzheng/TagFex_CVPR2025.
Related papers
- Class Incremental Learning with Task-Specific Batch Normalization and Out-of-Distribution Detection [25.224930928724326]
This study focuses on incremental learning for image classification, exploring how to reduce catastrophic forgetting of all learned knowledge when access to old data is restricted due to memory or privacy constraints.
The challenge of incremental learning lies in achieving an optimal balance between plasticity, the ability to learn new knowledge, and stability, the ability to retain old knowledge.
arXiv Detail & Related papers (2024-11-01T07:54:29Z) - MCF-VC: Mitigate Catastrophic Forgetting in Class-Incremental Learning
for Multimodal Video Captioning [10.95493493610559]
We propose a method to Mitigate Catastrophic Forgetting in class-incremental learning for multimodal Video Captioning (MCF-VC)
In order to better constrain the knowledge characteristics of old and new tasks at the specific feature level, we have created the Two-stage Knowledge Distillation (TsKD)
Our experiments on the public dataset MSR-VTT show that the proposed method significantly resists the forgetting of previous tasks without replaying old samples, and performs well on the new task.
arXiv Detail & Related papers (2024-02-27T16:54:08Z) - TaE: Task-aware Expandable Representation for Long Tail Class Incremental Learning [42.630413950957795]
We introduce a novel Task-aware Expandable (TaE) framework to learn diverse representations from each incremental task.
TaE achieves state-of-the-art performance.
arXiv Detail & Related papers (2024-02-08T16:37:04Z) - Fine-Grained Knowledge Selection and Restoration for Non-Exemplar Class
Incremental Learning [64.14254712331116]
Non-exemplar class incremental learning aims to learn both the new and old tasks without accessing any training data from the past.
We propose a novel framework of fine-grained knowledge selection and restoration.
arXiv Detail & Related papers (2023-12-20T02:34:11Z) - TaskExpert: Dynamically Assembling Multi-Task Representations with
Memorial Mixture-of-Experts [11.608682595506354]
Recent models consider directly decoding task-specific features from one shared task-generic feature.
As the input feature is fully shared and each task decoder also shares decoding parameters for different input samples, it leads to a static feature decoding process.
We propose TaskExpert, a novel multi-task mixture-of-experts model that enables learning multiple representative task-generic feature spaces.
arXiv Detail & Related papers (2023-07-28T06:00:57Z) - Learning Options via Compression [62.55893046218824]
We propose a new objective that combines the maximum likelihood objective with a penalty on the description length of the skills.
Our objective learns skills that solve downstream tasks in fewer samples compared to skills learned from only maximizing likelihood.
arXiv Detail & Related papers (2022-12-08T22:34:59Z) - Continual Object Detection via Prototypical Task Correlation Guided
Gating Mechanism [120.1998866178014]
We present a flexible framework for continual object detection via pRotOtypical taSk corrElaTion guided gaTingAnism (ROSETTA)
Concretely, a unified framework is shared by all tasks while task-aware gates are introduced to automatically select sub-models for specific tasks.
Experiments on COCO-VOC, KITTI-Kitchen, class-incremental detection on VOC and sequential learning of four tasks show that ROSETTA yields state-of-the-art performance.
arXiv Detail & Related papers (2022-05-06T07:31:28Z) - Task Adaptive Parameter Sharing for Multi-Task Learning [114.80350786535952]
Adaptive Task Adapting Sharing (TAPS) is a method for tuning a base model to a new task by adaptively modifying a small, task-specific subset of layers.
Compared to other methods, TAPS retains high accuracy on downstream tasks while introducing few task-specific parameters.
We evaluate our method on a suite of fine-tuning tasks and architectures (ResNet, DenseNet, ViT) and show that it achieves state-of-the-art performance while being simple to implement.
arXiv Detail & Related papers (2022-03-30T23:16:07Z) - Adversarial Continual Learning [99.56738010842301]
We propose a hybrid continual learning framework that learns a disjoint representation for task-invariant and task-specific features.
Our model combines architecture growth to prevent forgetting of task-specific skills and an experience replay approach to preserve shared skills.
arXiv Detail & Related papers (2020-03-21T02:08:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.