MCF-VC: Mitigate Catastrophic Forgetting in Class-Incremental Learning
for Multimodal Video Captioning
- URL: http://arxiv.org/abs/2402.17680v1
- Date: Tue, 27 Feb 2024 16:54:08 GMT
- Title: MCF-VC: Mitigate Catastrophic Forgetting in Class-Incremental Learning
for Multimodal Video Captioning
- Authors: Huiyu Xiong, Lanxiao Wang, Heqian Qiu, Taijin Zhao, Benliu Qiu,
Hongliang Li
- Abstract summary: We propose a method to Mitigate Catastrophic Forgetting in class-incremental learning for multimodal Video Captioning (MCF-VC)
In order to better constrain the knowledge characteristics of old and new tasks at the specific feature level, we have created the Two-stage Knowledge Distillation (TsKD)
Our experiments on the public dataset MSR-VTT show that the proposed method significantly resists the forgetting of previous tasks without replaying old samples, and performs well on the new task.
- Score: 10.95493493610559
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To address the problem of catastrophic forgetting due to the invisibility of
old categories in sequential input, existing work based on relatively simple
categorization tasks has made some progress. In contrast, video captioning is a
more complex task in multimodal scenario, which has not been explored in the
field of incremental learning. After identifying this stability-plasticity
problem when analyzing video with sequential input, we originally propose a
method to Mitigate Catastrophic Forgetting in class-incremental learning for
multimodal Video Captioning (MCF-VC). As for effectively maintaining good
performance on old tasks at the macro level, we design Fine-grained Sensitivity
Selection (FgSS) based on the Mask of Linear's Parameters and Fisher
Sensitivity to pick useful knowledge from old tasks. Further, in order to
better constrain the knowledge characteristics of old and new tasks at the
specific feature level, we have created the Two-stage Knowledge Distillation
(TsKD), which is able to learn the new task well while weighing the old task.
Specifically, we design two distillation losses, which constrain the cross
modal semantic information of semantic attention feature map and the textual
information of the final outputs respectively, so that the inter-model and
intra-model stylized knowledge of the old class is retained while learning the
new class. In order to illustrate the ability of our model to resist
forgetting, we designed a metric CIDER_t to detect the stage forgetting rate.
Our experiments on the public dataset MSR-VTT show that the proposed method
significantly resists the forgetting of previous tasks without replaying old
samples, and performs well on the new task.
Related papers
- Low-Rank Mixture-of-Experts for Continual Medical Image Segmentation [18.984447545932706]
"catastrophic forgetting" problem occurs when model forgets previously learned features when it is extended to new categories or tasks.
We propose a network by introducing the data-specific Mixture of Experts structure to handle the new tasks or categories.
We validate our method on both class-level and task-level continual learning challenges.
arXiv Detail & Related papers (2024-06-19T14:19:50Z) - Fine-Grained Knowledge Selection and Restoration for Non-Exemplar Class
Incremental Learning [64.14254712331116]
Non-exemplar class incremental learning aims to learn both the new and old tasks without accessing any training data from the past.
We propose a novel framework of fine-grained knowledge selection and restoration.
arXiv Detail & Related papers (2023-12-20T02:34:11Z) - Complementary Learning Subnetworks for Parameter-Efficient
Class-Incremental Learning [40.13416912075668]
We propose a rehearsal-free CIL approach that learns continually via the synergy between two Complementary Learning Subnetworks.
Our method achieves competitive results against state-of-the-art methods, especially in accuracy gain, memory cost, training efficiency, and task-order.
arXiv Detail & Related papers (2023-06-21T01:43:25Z) - Learning without Forgetting for Vision-Language Models [65.49600786387106]
Class-Incremental Learning (CIL) or continual learning is a desired capability in the real world.
Recent advances in Vision-Language Models (VLM) have shown promising capabilities in learning generalizable representations.
We propose PROjectiOn Fusion (PROOF) that enables VLMs to learn without forgetting.
arXiv Detail & Related papers (2023-05-30T17:59:32Z) - Task-Adaptive Saliency Guidance for Exemplar-free Class Incremental Learning [60.501201259732625]
We introduce task-adaptive saliency for EFCIL and propose a new framework, which we call Task-Adaptive Saliency Supervision (TASS)
Our experiments demonstrate that our method can better preserve saliency maps across tasks and achieve state-of-the-art results on the CIFAR-100, Tiny-ImageNet, and ImageNet-Subset EFCIL benchmarks.
arXiv Detail & Related papers (2022-12-16T02:43:52Z) - Multi-Modal Few-Shot Temporal Action Detection [157.96194484236483]
Few-shot (FS) and zero-shot (ZS) learning are two different approaches for scaling temporal action detection to new classes.
We introduce a new multi-modality few-shot (MMFS) TAD problem, which can be considered as a marriage of FS-TAD and ZS-TAD.
arXiv Detail & Related papers (2022-11-27T18:13:05Z) - Few-Shot Class-Incremental Learning by Sampling Multi-Phase Tasks [59.12108527904171]
A model should recognize new classes and maintain discriminability over old classes.
The task of recognizing few-shot new classes without forgetting old classes is called few-shot class-incremental learning (FSCIL)
We propose a new paradigm for FSCIL based on meta-learning by LearnIng Multi-phase Incremental Tasks (LIMIT)
arXiv Detail & Related papers (2022-03-31T13:46:41Z) - Class-incremental learning: survey and performance evaluation on image
classification [38.27344435075399]
Incremental learning allows for efficient resource usage by eliminating the need to retrain from scratch at the arrival of new data.
The main challenge for incremental learning is catastrophic forgetting, which refers to the precipitous drop in performance on previously learned tasks after learning a new one.
Recently, we have seen a shift towards class-incremental learning where the learner must discriminate at inference time between all classes seen in previous tasks without recourse to a task-ID.
arXiv Detail & Related papers (2020-10-28T23:28:15Z) - Self-Supervised Learning Aided Class-Incremental Lifelong Learning [17.151579393716958]
We study the issue of catastrophic forgetting in class-incremental learning (Class-IL)
In training procedure of Class-IL, as the model has no knowledge about following tasks, it would only extract features necessary for tasks learned so far, whose information is insufficient for joint classification.
We propose to combine self-supervised learning, which can provide effective representations without requiring labels, with Class-IL to partly get around this problem.
arXiv Detail & Related papers (2020-06-10T15:15:27Z) - Incremental Object Detection via Meta-Learning [77.55310507917012]
We propose a meta-learning approach that learns to reshape model gradients, such that information across incremental tasks is optimally shared.
In comparison to existing meta-learning methods, our approach is task-agnostic, allows incremental addition of new-classes and scales to high-capacity models for object detection.
arXiv Detail & Related papers (2020-03-17T13:40:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.