CyberCScope: Mining Skewed Tensor Streams and Online Anomaly Detection in Cybersecurity Systems
- URL: http://arxiv.org/abs/2503.00871v1
- Date: Sun, 02 Mar 2025 12:17:24 GMT
- Title: CyberCScope: Mining Skewed Tensor Streams and Online Anomaly Detection in Cybersecurity Systems
- Authors: Kota Nakamura, Koki Kawabata, Shungo Tanaka, Yasuko Matsubara, Yasushi Sakurai,
- Abstract summary: We propose a novel streaming method, namely CyberCScope.<n>It effectively decomposes incoming tensors into major trends while explicitly distinguishing between categorical and skewed continuous attributes.<n>Experiments on large-scale real datasets demonstrate that CyberCScope detects various intrusions with higher accuracy than state-of-the-art baselines.
- Score: 7.337687622011136
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Cybersecurity systems are continuously producing a huge number of time-stamped events in the form of high-order tensors, such as {count; time, port, flow duration, packet size, . . . }, and so how can we detect anomalies/intrusions in real time? How can we identify multiple types of intrusions and capture their characteristic behaviors? The tensor data consists of categorical and continuous attributes and the data distributions of continuous attributes typically exhibit skew. These data properties require handling skewed infinite and finite dimensional spaces simultaneously. In this paper, we propose a novel streaming method, namely CyberCScope. The method effectively decomposes incoming tensors into major trends while explicitly distinguishing between categorical and skewed continuous attributes. To our knowledge, it is the first to compute hybrid skewed infinite and finite dimensional decomposition. Based on this decomposition, it streamingly finds distinct time-evolving patterns, enabling the detection of multiple types of anomalies. Extensive experiments on large-scale real datasets demonstrate that CyberCScope detects various intrusions with higher accuracy than state-of-the-art baselines while providing meaningful summaries for the intrusions that occur in practice.
Related papers
- A Dataset for Semantic Segmentation in the Presence of Unknowns [49.795683850385956]
Existing datasets allow evaluation of only knowns or unknowns - but not both.
We propose a novel anomaly segmentation dataset, ISSU, that features a diverse set of anomaly inputs from cluttered real-world environments.
The dataset is twice larger than existing anomaly segmentation datasets.
arXiv Detail & Related papers (2025-03-28T10:31:01Z) - Detecting Anomalies in Dynamic Graphs via Memory enhanced Normality [39.476378833827184]
Anomaly detection in dynamic graphs presents a significant challenge due to the temporal evolution of graph structures and attributes.
We introduce a novel spatial- temporal memories-enhanced graph autoencoder (STRIPE)
STRIPE significantly outperforms existing methods with 5.8% improvement in AUC scores and 4.62X faster in training time.
arXiv Detail & Related papers (2024-03-14T02:26:10Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
We introduce a novel framework called GST-Pro, which utilizes a graphtemporal process and anomaly scorer to detect anomalies.
Our experimental results show that the GST-Pro method can effectively detect anomalies in time series data and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-01-11T10:10:16Z) - CARLA: Self-supervised Contrastive Representation Learning for Time Series Anomaly Detection [53.83593870825628]
One main challenge in time series anomaly detection (TSAD) is the lack of labelled data in many real-life scenarios.
Most of the existing anomaly detection methods focus on learning the normal behaviour of unlabelled time series in an unsupervised manner.
We introduce a novel end-to-end self-supervised ContrAstive Representation Learning approach for time series anomaly detection.
arXiv Detail & Related papers (2023-08-18T04:45:56Z) - Spatial-Frequency Discriminability for Revealing Adversarial Perturbations [53.279716307171604]
Vulnerability of deep neural networks to adversarial perturbations has been widely perceived in the computer vision community.
Current algorithms typically detect adversarial patterns through discriminative decomposition for natural and adversarial data.
We propose a discriminative detector relying on a spatial-frequency Krawtchouk decomposition.
arXiv Detail & Related papers (2023-05-18T10:18:59Z) - AnomalyBERT: Self-Supervised Transformer for Time Series Anomaly
Detection using Data Degradation Scheme [0.7216399430290167]
Anomaly detection task for time series, especially for unlabeled data, has been a challenging problem.
We address it by applying a suitable data degradation scheme to self-supervised model training.
Inspired by the self-attention mechanism, we design a Transformer-based architecture to recognize the temporal context.
arXiv Detail & Related papers (2023-05-08T05:42:24Z) - Fast and Multi-aspect Mining of Complex Time-stamped Event Streams [9.528974201794963]
We present CubeScope, an efficient and effective method over high-order tensor streams.
Specifically, it identifies any sudden discontinuity and recognizes distinct dynamical patterns.
In each regime, it also performs multi-way summarization for all attributes.
It can also detect the sudden appearance of anomalies and identify the types of anomalies that occur in practice.
arXiv Detail & Related papers (2023-03-07T10:52:59Z) - Continuous-time convolutions model of event sequences [46.3471121117337]
Event sequences are non-uniform and sparse, making traditional models unsuitable.
We propose COTIC, a method based on an efficient convolution neural network designed to handle the non-uniform occurrence of events over time.
COTIC outperforms existing models in predicting the next event time and type, achieving an average rank of 1.5 compared to 3.714 for the nearest competitor.
arXiv Detail & Related papers (2023-02-13T10:34:51Z) - HFN: Heterogeneous Feature Network for Multivariate Time Series Anomaly
Detection [2.253268952202213]
We propose a novel semi-supervised anomaly detection framework based on a heterogeneous feature network (HFN) for MTS.
We first combine the embedding similarity subgraph generated by sensor embedding and feature value similarity subgraph generated by sensor values to construct a time-series heterogeneous graph.
This approach fuses the state-of-the-art technologies of heterogeneous graph structure learning (HGSL) and representation learning.
arXiv Detail & Related papers (2022-11-01T05:01:34Z) - A Robust and Explainable Data-Driven Anomaly Detection Approach For
Power Electronics [56.86150790999639]
We present two anomaly detection and classification approaches, namely the Matrix Profile algorithm and anomaly transformer.
The Matrix Profile algorithm is shown to be well suited as a generalizable approach for detecting real-time anomalies in streaming time-series data.
A series of custom filters is created and added to the detector to tune its sensitivity, recall, and detection accuracy.
arXiv Detail & Related papers (2022-09-23T06:09:35Z) - Federated Variational Learning for Anomaly Detection in Multivariate
Time Series [13.328883578980237]
We propose an unsupervised time series anomaly detection framework in a federated fashion.
We leave the training data distributed at the edge to learn a shared Variational Autoencoder (VAE) based on Convolutional Gated Recurrent Unit (ConvGRU) model.
Experiments on three real-world networked sensor datasets illustrate the advantage of our approach over other state-of-the-art models.
arXiv Detail & Related papers (2021-08-18T22:23:15Z) - TELESTO: A Graph Neural Network Model for Anomaly Classification in
Cloud Services [77.454688257702]
Machine learning (ML) and artificial intelligence (AI) are applied on IT system operation and maintenance.
One direction aims at the recognition of re-occurring anomaly types to enable remediation automation.
We propose a method that is invariant to dimensionality changes of given data.
arXiv Detail & Related papers (2021-02-25T14:24:49Z) - MSTREAM: Fast Anomaly Detection in Multi-Aspect Streams [33.20161160552062]
MSTREAM can detect unusual group anomalies as they occur in a dynamic manner.
It is evaluated over the KDDCUP99, CICIDS-DoS, UNSW-NB 15 and CICIDS-DDoS datasets.
arXiv Detail & Related papers (2020-09-17T17:59:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.