DEAL: Data-Efficient Adversarial Learning for High-Quality Infrared Imaging
- URL: http://arxiv.org/abs/2503.00905v1
- Date: Sun, 02 Mar 2025 14:15:44 GMT
- Title: DEAL: Data-Efficient Adversarial Learning for High-Quality Infrared Imaging
- Authors: Zhu Liu, Zijun Wang, Jinyuan Liu, Fanqi Meng, Long Ma, Risheng Liu,
- Abstract summary: We introduce thermal degradation simulation integrated into the training process via a mini-max optimization.<n>The simulation is dynamic to maximize objective functions, thus capturing a broad spectrum of degraded data distributions.<n>This approach enables training with limited data, thereby improving model performance.
- Score: 47.22313650077835
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Thermal imaging is often compromised by dynamic, complex degradations caused by hardware limitations and unpredictable environmental factors. The scarcity of high-quality infrared data, coupled with the challenges of dynamic, intricate degradations, makes it difficult to recover details using existing methods. In this paper, we introduce thermal degradation simulation integrated into the training process via a mini-max optimization, by modeling these degraded factors as adversarial attacks on thermal images. The simulation is dynamic to maximize objective functions, thus capturing a broad spectrum of degraded data distributions. This approach enables training with limited data, thereby improving model performance.Additionally, we introduce a dual-interaction network that combines the benefits of spiking neural networks with scale transformation to capture degraded features with sharp spike signal intensities. This architecture ensures compact model parameters while preserving efficient feature representation. Extensive experiments demonstrate that our method not only achieves superior visual quality under diverse single and composited degradation, but also delivers a significant reduction in processing when trained on only fifty clear images, outperforming existing techniques in efficiency and accuracy. The source code will be available at https://github.com/LiuZhu-CV/DEAL.
Related papers
- LayerMix: Enhanced Data Augmentation through Fractal Integration for Robust Deep Learning [1.786053901581251]
Deep learning models often struggle to maintain consistent performance when confronted with Out-of-Distribution (OOD) samples.
We introduce LayerMix, an innovative data augmentation approach that systematically enhances model robustness.
Our method generates semantically consistent synthetic samples that significantly improve neural network generalization capabilities.
arXiv Detail & Related papers (2025-01-08T22:22:44Z) - Cross-Scan Mamba with Masked Training for Robust Spectral Imaging [51.557804095896174]
We propose the Cross-Scanning Mamba, named CS-Mamba, that employs a Spatial-Spectral SSM for global-local balanced context encoding.<n>Experiment results show that our CS-Mamba achieves state-of-the-art performance and the masked training method can better reconstruct smooth features to improve the visual quality.
arXiv Detail & Related papers (2024-08-01T15:14:10Z) - Efficient Degradation-aware Any Image Restoration [83.92870105933679]
We propose textitDaAIR, an efficient All-in-One image restorer employing a Degradation-aware Learner (DaLe) in the low-rank regime.
By dynamically allocating model capacity to input degradations, we realize an efficient restorer integrating holistic and specific learning.
arXiv Detail & Related papers (2024-05-24T11:53:27Z) - Multi-Scale Texture Loss for CT denoising with GANs [0.9349653765341301]
We present a novel approach to capture and embed multi-scale texture information into the loss function.<n>Our method introduces a differentiable multi-scale texture representation of the images dynamically aggregated by a self-attention layer.<n>We validate our approach by carrying out extensive experiments in the context of low-dose CT denoising.
arXiv Detail & Related papers (2024-03-25T11:28:52Z) - DGNet: Dynamic Gradient-Guided Network for Water-Related Optics Image
Enhancement [77.0360085530701]
Underwater image enhancement (UIE) is a challenging task due to the complex degradation caused by underwater environments.
Previous methods often idealize the degradation process, and neglect the impact of medium noise and object motion on the distribution of image features.
Our approach utilizes predicted images to dynamically update pseudo-labels, adding a dynamic gradient to optimize the network's gradient space.
arXiv Detail & Related papers (2023-12-12T06:07:21Z) - Distance Weighted Trans Network for Image Completion [52.318730994423106]
We propose a new architecture that relies on Distance-based Weighted Transformer (DWT) to better understand the relationships between an image's components.
CNNs are used to augment the local texture information of coarse priors.
DWT blocks are used to recover certain coarse textures and coherent visual structures.
arXiv Detail & Related papers (2023-10-11T12:46:11Z) - Physics-Driven Turbulence Image Restoration with Stochastic Refinement [80.79900297089176]
Image distortion by atmospheric turbulence is a critical problem in long-range optical imaging systems.
Fast and physics-grounded simulation tools have been introduced to help the deep-learning models adapt to real-world turbulence conditions.
This paper proposes the Physics-integrated Restoration Network (PiRN) to help the network to disentangle theity from the degradation and the underlying image.
arXiv Detail & Related papers (2023-07-20T05:49:21Z) - Efficient and Degradation-Adaptive Network for Real-World Image
Super-Resolution [28.00231586840797]
Real-world image super-resolution (Real-ISR) is a challenging task due to the unknown complex degradation of real-world images.
Recent research on Real-ISR has achieved significant progress by modeling the image degradation space.
We propose an efficient degradation-adaptive super-resolution (DASR) network, whose parameters are adaptively specified by estimating the degradation of each input image.
arXiv Detail & Related papers (2022-03-27T05:59:13Z) - Boosting Image Super-Resolution Via Fusion of Complementary Information
Captured by Multi-Modal Sensors [21.264746234523678]
Image Super-Resolution (SR) provides a promising technique to enhance the image quality of low-resolution optical sensors.
In this paper, we attempt to leverage complementary information from a low-cost channel (visible/depth) to boost image quality of an expensive channel (thermal) using fewer parameters.
arXiv Detail & Related papers (2020-12-07T02:15:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.