Federated Conversational Recommender System
- URL: http://arxiv.org/abs/2503.00999v1
- Date: Sun, 02 Mar 2025 19:39:29 GMT
- Title: Federated Conversational Recommender System
- Authors: Allen Lin, Jianling Wang, Ziwei Zhu, James Caverlee,
- Abstract summary: Fine-grained user preferences can easily be used to infer sensitive information about the user, if leaked or breached.<n>We propose a novel federated conversational recommendation framework that effectively reduces the risk of exposing user privacy.<n>We show that the proposed framework not only satisfies these user privacy protection guidelines, but also enables the system to achieve competitive recommendation performance.
- Score: 19.10820197898819
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Conversational Recommender Systems (CRSs) have become increasingly popular as a powerful tool for providing personalized recommendation experiences. By directly engaging with users in a conversational manner to learn their current and fine-grained preferences, a CRS can quickly derive recommendations that are relevant and justifiable. However, existing conversational recommendation systems (CRSs) typically rely on a centralized training and deployment process, which involves collecting and storing explicitly-communicated user preferences in a centralized repository. These fine-grained user preferences are completely human-interpretable and can easily be used to infer sensitive information (e.g., financial status, political stands, and health information) about the user, if leaked or breached. To address the user privacy concerns in CRS, we first define a set of privacy protection guidelines for preserving user privacy under the conversational recommendation setting. Based on these guidelines, we propose a novel federated conversational recommendation framework that effectively reduces the risk of exposing user privacy by (i) de-centralizing both the historical interests estimation stage and the interactive preference elicitation stage and (ii) strictly bounding privacy leakage by enforcing user-level differential privacy with meticulously selected privacy budgets. Through extensive experiments, we show that the proposed framework not only satisfies these user privacy protection guidelines, but also enables the system to achieve competitive recommendation performance even when compared to the state-of-the-art non-private conversational recommendation approach.
Related papers
- User Consented Federated Recommender System Against Personalized
Attribute Inference Attack [55.24441467292359]
We propose a user-consented federated recommendation system (UC-FedRec) to flexibly satisfy the different privacy needs of users.
UC-FedRec allows users to self-define their privacy preferences to meet various demands and makes recommendations with user consent.
arXiv Detail & Related papers (2023-12-23T09:44:57Z) - Vague Preference Policy Learning for Conversational Recommendation [48.868921530958666]
Conversational recommendation systems commonly assume users have clear preferences, leading to potential over-filtering.<n>We introduce the Vague Preference Multi-round Conversational Recommendation (VPMCR) scenario, employing a soft estimation mechanism to accommodate users' vague and dynamic preferences.<n>Our work advances CRS by accommodating users' inherent ambiguity and relative decision-making processes, improving real-world applicability.
arXiv Detail & Related papers (2023-06-07T14:57:21Z) - Privacy-Preserving Matrix Factorization for Recommendation Systems using
Gaussian Mechanism [2.84279467589473]
We propose a privacy-preserving recommendation system based on the differential privacy framework and matrix factorization.
As differential privacy is a powerful and robust mathematical framework for designing privacy-preserving machine learning algorithms, it is possible to prevent adversaries from extracting sensitive user information.
arXiv Detail & Related papers (2023-04-11T13:50:39Z) - Editable User Profiles for Controllable Text Recommendation [66.00743968792275]
We propose LACE, a novel concept value bottleneck model for controllable text recommendations.
LACE represents each user with a succinct set of human-readable concepts.
It learns personalized representations of the concepts based on user documents.
arXiv Detail & Related papers (2023-04-09T14:52:18Z) - Leveraging Privacy Profiles to Empower Users in the Digital Society [7.350403786094707]
Privacy and ethics of citizens are at the core of the concerns raised by our increasingly digital society.
We focus on the privacy dimension and contribute a step in the above direction through an empirical study on an existing dataset collected from the fitness domain.
The results reveal that a compact set of semantic-driven questions helps distinguish users better than a complex domain-dependent one.
arXiv Detail & Related papers (2022-04-01T15:31:50Z) - Learning to Ask Appropriate Questions in Conversational Recommendation [49.31942688227828]
We propose the Knowledge-Based Question Generation System (KBQG), a novel framework for conversational recommendation.
KBQG models a user's preference in a finer granularity by identifying the most relevant relations from a structured knowledge graph.
Finially, accurate recommendations can be generated in fewer conversational turns.
arXiv Detail & Related papers (2021-05-11T03:58:10Z) - Stronger Privacy for Federated Collaborative Filtering with Implicit
Feedback [13.37601438005323]
We propose a practical federated recommender system for implicit data under user-level local differential privacy (LDP)
The privacy-utility trade-off is controlled by parameters $epsilon$ and $k$, regulating the per-update privacy budget and the number of $epsilon$-LDP gradient updates sent by each user respectively.
We empirically demonstrate the effectiveness of our framework on the MovieLens dataset, achieving up to Hit Ratio with K=10 (HR@10) 0.68 on 50k users with 5k items.
arXiv Detail & Related papers (2021-05-09T13:41:45Z) - A Novel Privacy-Preserved Recommender System Framework based on
Federated Learning [0.0]
This paper proposed a novel privacy-preserved recommender system framework (PPRSF)
The PPRSF not only able to reduces the privacy leakage risk, satisfies legal and regulatory requirements but also allows various recommendation algorithms to be applied.
arXiv Detail & Related papers (2020-11-11T08:07:58Z) - Private Reinforcement Learning with PAC and Regret Guarantees [69.4202374491817]
We design privacy preserving exploration policies for episodic reinforcement learning (RL)
We first provide a meaningful privacy formulation using the notion of joint differential privacy (JDP)
We then develop a private optimism-based learning algorithm that simultaneously achieves strong PAC and regret bounds, and enjoys a JDP guarantee.
arXiv Detail & Related papers (2020-09-18T20:18:35Z) - Reward Constrained Interactive Recommendation with Natural Language
Feedback [158.8095688415973]
We propose a novel constraint-augmented reinforcement learning (RL) framework to efficiently incorporate user preferences over time.
Specifically, we leverage a discriminator to detect recommendations violating user historical preference.
Our proposed framework is general and is further extended to the task of constrained text generation.
arXiv Detail & Related papers (2020-05-04T16:23:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.