Towards An Efficient LLM Training Paradigm for CTR Prediction
- URL: http://arxiv.org/abs/2503.01001v3
- Date: Sat, 15 Mar 2025 14:45:21 GMT
- Title: Towards An Efficient LLM Training Paradigm for CTR Prediction
- Authors: Allen Lin, Renqin Cai, Yun He, Hanchao Yu, Jing Qian, Rui Li, Qifan Wang, James Caverlee,
- Abstract summary: Large Language Models (LLMs) can significantly outperform conventional click-through-rate (CTR) prediction approaches.<n>To train LLMs for CTR prediction, most existing studies adopt the prevalent ''sliding-window'' paradigm.<n>We propose a novel training paradigm, namely Dynamic Target Isolation (DTI), that structurally parallelizes the training of $k$ target interactions.
- Score: 37.20013051226115
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) have demonstrated tremendous potential as the next-generation ranking-based recommendation system. Many recent works have shown that LLMs can significantly outperform conventional click-through-rate (CTR) prediction approaches. Despite such promising results, the computational inefficiency inherent in the current training paradigm makes it particularly challenging to train LLMs for ranking-based recommendation tasks on large datasets. To train LLMs for CTR prediction, most existing studies adopt the prevalent ''sliding-window'' paradigm. Given a sequence of $m$ user interactions, a unique training prompt is constructed for each interaction by designating it as the prediction target along with its preceding $n$ interactions serving as context. In turn, the sliding-window paradigm results in an overall complexity of $O(mn^2)$ that scales linearly with the length of user interactions. Consequently, a direct adoption to train LLMs with such strategy can result in prohibitively high training costs as the length of interactions grows. To alleviate the computational inefficiency, we propose a novel training paradigm, namely Dynamic Target Isolation (DTI), that structurally parallelizes the training of $k$ (where $k >> 1$) target interactions. Furthermore, we identify two major bottlenecks - hidden-state leakage and positional bias overfitting - that limit DTI to only scale up to a small value of $k$ (e.g., 5) then propose a computationally light solution to effectively tackle each. Through extensive experiments on three widely adopted public CTR datasets, we empirically show that DTI reduces training time by an average of $\textbf{92%}$ (e.g., from $70.5$ hrs to $5.31$ hrs), without compromising CTR prediction performance.
Related papers
- TRACT: Regression-Aware Fine-tuning Meets Chain-of-Thought Reasoning for LLM-as-a-Judge [59.57934574562651]
TRACT (Two-stage Regression-Aware fine-tuning with CoT) is a method combining CoT reasoning with regression-aware training.
Experiments across four LLM-as-a-judge datasets and two LLMs show that TRACT significantly outperforms existing methods.
arXiv Detail & Related papers (2025-03-06T12:33:20Z) - LESA: Learnable LLM Layer Scaling-Up [57.0510934286449]
Training Large Language Models (LLMs) from scratch requires immense computational resources, making it prohibitively expensive.<n>Model scaling-up offers a promising solution by leveraging the parameters of smaller models to create larger ones.<n>We propose textbfLESA, a novel learnable method for depth scaling-up.
arXiv Detail & Related papers (2025-02-19T14:58:48Z) - S$^2$R: Teaching LLMs to Self-verify and Self-correct via Reinforcement Learning [51.84977135926156]
We introduce S$2$R, an efficient framework that enhances LLM reasoning by teaching models to self-verify and self-correct during inference.<n>Our results demonstrate that Qwen2.5-math-7B achieves an accuracy improvement from 51.0% to 81.6%, outperforming models trained on an equivalent amount of long-CoT distilled data.
arXiv Detail & Related papers (2025-02-18T13:40:22Z) - Rational Metareasoning for Large Language Models [5.5539136805232205]
Being prompted to engage in reasoning has emerged as a core technique for using large language models (LLMs)<n>This work introduces a novel approach based on computational models of metareasoning used in cognitive science.<n>We develop a reward function that incorporates the Value of Computation by penalizing unnecessary reasoning.
arXiv Detail & Related papers (2024-10-07T23:48:52Z) - Towards Efficient LLM Grounding for Embodied Multi-Agent Collaboration [70.09561665520043]
We propose a novel framework for multi-agent collaboration that introduces Reinforced Advantage feedback (ReAd) for efficient self-refinement of plans.
We provide theoretical analysis by extending advantage-weighted regression in reinforcement learning to multi-agent systems.
Experiments on Over-AI and a difficult variant of RoCoBench show that ReAd surpasses baselines in success rate, and also significantly decreases the interaction steps of agents.
arXiv Detail & Related papers (2024-05-23T08:33:19Z) - Breaking the Length Barrier: LLM-Enhanced CTR Prediction in Long Textual User Behaviors [25.086118164540974]
Large language models (LLMs) are used to improve the performance of click-through rate (CTR) prediction.
As user sequences grow longer, the current efficiency of LLMs is inadequate for training on billions of users and items.
We propose Behavior Aggregated Hierarchical (BAHE) to enhance the efficiency of LLM-based CTR modeling.
arXiv Detail & Related papers (2024-03-28T12:05:15Z) - Simple and Scalable Strategies to Continually Pre-train Large Language Models [20.643648785602462]
Large language models (LLMs) are routinely pre-trained on billions of tokens, only to start the process over again once new data becomes available.
We show that a simple and scalable combination of learning rate re-warming, LR re-decaying, and replay of previous data is sufficient to match the performance of fully re-training from scratch.
arXiv Detail & Related papers (2024-03-13T17:58:57Z) - Unleashing the Power of Pre-trained Language Models for Offline Reinforcement Learning [50.9692060692705]
This paper introduces $textbfLanguage Models for $textbfMo$tion Control ($textbfLaMo$), a general framework based on Decision Transformers for offline RL.<n>Our framework highlights four crucial components:.<n>Initializing Decision Transformers with sequentially pre-trained LMs, (2) employing the LoRA fine-tuning method,.<n>In particular, our method demonstrates superior performance in scenarios with limited data samples.
arXiv Detail & Related papers (2023-10-31T16:24:17Z) - Generalization Bounds for Adversarial Contrastive Learning [10.893632710192016]
We use Rademacher complexity to analyze the generalization performance of ACL.
Our theory shows that the average adversarial risk of the downstream tasks can be upper bounded by the adversarial unsupervised risk of the upstream task.
arXiv Detail & Related papers (2023-02-21T12:44:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.