Unleashing the Power of Pre-trained Language Models for Offline Reinforcement Learning
- URL: http://arxiv.org/abs/2310.20587v5
- Date: Tue, 17 Dec 2024 15:59:44 GMT
- Title: Unleashing the Power of Pre-trained Language Models for Offline Reinforcement Learning
- Authors: Ruizhe Shi, Yuyao Liu, Yanjie Ze, Simon S. Du, Huazhe Xu,
- Abstract summary: This paper introduces $textbfLanguage Models for $textbfMo$tion Control ($textbfLaMo$), a general framework based on Decision Transformers for offline RL.
Our framework highlights four crucial components:.
Initializing Decision Transformers with sequentially pre-trained LMs, (2) employing the LoRA fine-tuning method,.
In particular, our method demonstrates superior performance in scenarios with limited data samples.
- Score: 50.9692060692705
- License:
- Abstract: Offline reinforcement learning (RL) aims to find a near-optimal policy using pre-collected datasets. In real-world scenarios, data collection could be costly and risky; therefore, offline RL becomes particularly challenging when the in-domain data is limited. Given recent advances in Large Language Models (LLMs) and their few-shot learning prowess, this paper introduces $\textbf{La}$nguage Models for $\textbf{Mo}$tion Control ($\textbf{LaMo}$), a general framework based on Decision Transformers to effectively use pre-trained Language Models (LMs) for offline RL. Our framework highlights four crucial components: (1) Initializing Decision Transformers with sequentially pre-trained LMs, (2) employing the LoRA fine-tuning method, in contrast to full-weight fine-tuning, to combine the pre-trained knowledge from LMs and in-domain knowledge effectively, (3) using the non-linear MLP transformation instead of linear projections, to generate embeddings, and (4) integrating an auxiliary language prediction loss during fine-tuning to stabilize the LMs and retain their original abilities on languages. Empirical results indicate $\textbf{LaMo}$ achieves excellent performance in sparse-reward tasks and closes the gap between value-based offline RL methods and decision transformers in dense-reward tasks. In particular, our method demonstrates superior performance in scenarios with limited data samples.
Related papers
- S$^2$R: Teaching LLMs to Self-verify and Self-correct via Reinforcement Learning [51.84977135926156]
We introduce S$2$R, an efficient framework that enhances LLM reasoning by teaching models to self-verify and self-correct during inference.
Our results demonstrate that Qwen2.5-math-7B achieves an accuracy improvement from 51.0% to 81.6%, outperforming models trained on an equivalent amount of long-CoT distilled data.
arXiv Detail & Related papers (2025-02-18T13:40:22Z) - LLM-Lasso: A Robust Framework for Domain-Informed Feature Selection and Regularization [59.75242204923353]
We introduce LLM-Lasso, a framework that leverages large language models (LLMs) to guide feature selection in Lasso regression.
LLMs generate penalty factors for each feature, which are converted into weights for the Lasso penalty using a simple, tunable model.
Features identified as more relevant by the LLM receive lower penalties, increasing their likelihood of being retained in the final model.
arXiv Detail & Related papers (2025-02-15T02:55:22Z) - Small Models, Big Impact: Efficient Corpus and Graph-Based Adaptation of Small Multilingual Language Models for Low-Resource Languages [10.418542753869433]
Low-resource languages (LRLs) face significant challenges in natural language processing (NLP) due to limited data.
Current state-of-the-art large language models (LLMs) still struggle with LRLs.
Small multilingual models (mLMs) such as mBERT and XLM-R offer greater promise due to a better fit of their capacity to low training data sizes.
arXiv Detail & Related papers (2025-02-14T13:10:39Z) - Q-SFT: Q-Learning for Language Models via Supervised Fine-Tuning [62.984693936073974]
Value-based reinforcement learning can learn effective policies for a wide range of multi-turn problems.
Current value-based RL methods have proven particularly challenging to scale to the setting of large language models.
We propose a novel offline RL algorithm that addresses these drawbacks, casting Q-learning as a modified supervised fine-tuning problem.
arXiv Detail & Related papers (2024-11-07T21:36:52Z) - Accelerating Large Language Model Pretraining via LFR Pedagogy: Learn, Focus, and Review [50.78587571704713]
Learn-Focus-Review (LFR) is a dynamic training approach that adapts to the model's learning progress.
LFR tracks the model's learning performance across data blocks (sequences of tokens) and prioritizes revisiting challenging regions of the dataset.
Compared to baseline models trained on the full datasets, LFR consistently achieved lower perplexity and higher accuracy.
arXiv Detail & Related papers (2024-09-10T00:59:18Z) - LMGT: Optimizing Exploration-Exploitation Balance in Reinforcement Learning through Language Model Guided Trade-offs [27.014415210732103]
We introduce textbfLanguage textbfModel textbfGuided textbfTrade-offs (i.e., textbfLMGT), a novel, sample-efficient framework for Reinforcement Learning.
arXiv Detail & Related papers (2024-09-07T07:40:43Z) - Unveiling the Vulnerability of Private Fine-Tuning in Split-Based Frameworks for Large Language Models: A Bidirectionally Enhanced Attack [20.727726850786386]
BiSR is the first data reconstruction attack designed to target both the forward and backward propagation processes of split learning (SL)
We propose BiSR, the first data reconstruction attack (DRA) designed to target both the forward and backward propagation processes of SL.
arXiv Detail & Related papers (2024-09-02T06:01:20Z) - Reinforced Self-Training (ReST) for Language Modeling [56.75447441157628]
Reinforcement learning from human feedback (RLHF) can improve the quality of large language model's (LLM) outputs by aligning them with human preferences.
We propose a simple algorithm for aligning LLMs with human preferences inspired by growing batch reinforcement learning (RL), which we call Reinforced Self-Training (ReST)
Our results show that ReST can substantially improve translation quality, as measured by automated metrics and human evaluation on machine translation benchmarks in a compute and sample-efficient manner.
arXiv Detail & Related papers (2023-08-17T14:12:48Z) - Mixture of Soft Prompts for Controllable Data Generation [21.84489422361048]
Mixture of Soft Prompts (MSP) is proposed as a tool for data augmentation rather than direct prediction.
Our method achieves state-of-the-art results on three benchmarks when compared against strong baselines.
arXiv Detail & Related papers (2023-03-02T21:13:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.