Data Unlearning in Diffusion Models
- URL: http://arxiv.org/abs/2503.01034v1
- Date: Sun, 02 Mar 2025 21:36:04 GMT
- Title: Data Unlearning in Diffusion Models
- Authors: Silas Alberti, Kenan Hasanaliyev, Manav Shah, Stefano Ermon,
- Abstract summary: General-purpose machine unlearning techniques were found to be either unstable or failed to unlearn data.<n>We propose a family of new loss functions called Subtracted Importance Sampled Scores (SISS) that utilize importance sampling and are the first method to unlearn data with theoretical guarantees.
- Score: 44.99833362998488
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent work has shown that diffusion models memorize and reproduce training data examples. At the same time, large copyright lawsuits and legislation such as GDPR have highlighted the need for erasing datapoints from diffusion models. However, retraining from scratch is often too expensive. This motivates the setting of data unlearning, i.e., the study of efficient techniques for unlearning specific datapoints from the training set. Existing concept unlearning techniques require an anchor prompt/class/distribution to guide unlearning, which is not available in the data unlearning setting. General-purpose machine unlearning techniques were found to be either unstable or failed to unlearn data. We therefore propose a family of new loss functions called Subtracted Importance Sampled Scores (SISS) that utilize importance sampling and are the first method to unlearn data with theoretical guarantees. SISS is constructed as a weighted combination between simpler objectives that are responsible for preserving model quality and unlearning the targeted datapoints. When evaluated on CelebA-HQ and MNIST, SISS achieved Pareto optimality along the quality and unlearning strength dimensions. On Stable Diffusion, SISS successfully mitigated memorization on nearly 90% of the prompts we tested.
Related papers
- FUNU: Boosting Machine Unlearning Efficiency by Filtering Unnecessary Unlearning [9.472692023087223]
We propose FUNU, a method to identify data points that lead to unnecessary unlearning.
We provide a theoretical analysis of FUNU and conduct extensive experiments to validate its efficacy.
arXiv Detail & Related papers (2025-01-28T01:19:07Z) - Partially Blinded Unlearning: Class Unlearning for Deep Networks a Bayesian Perspective [4.31734012105466]
Machine Unlearning is the process of selectively discarding information designated to specific sets or classes of data from a pre-trained model.
We propose a methodology tailored for the purposeful elimination of information linked to a specific class of data from a pre-trained classification network.
Our novel approach, termed textbfPartially-Blinded Unlearning (PBU), surpasses existing state-of-the-art class unlearning methods, demonstrating superior effectiveness.
arXiv Detail & Related papers (2024-03-24T17:33:22Z) - An Information Theoretic Approach to Machine Unlearning [43.423418819707784]
To comply with AI and data regulations, the need to forget private or copyrighted information from trained machine learning models is increasingly important.<n>In this work, we address the zero-shot unlearning scenario, whereby an unlearning algorithm must be able to remove data given only a trained model and the data to be forgotten.<n>We derive a simple but principled zero-shot unlearning method based on the geometry of the model.
arXiv Detail & Related papers (2024-02-02T13:33:30Z) - Learn to Unlearn for Deep Neural Networks: Minimizing Unlearning
Interference with Gradient Projection [56.292071534857946]
Recent data-privacy laws have sparked interest in machine unlearning.
Challenge is to discard information about the forget'' data without altering knowledge about remaining dataset.
We adopt a projected-gradient based learning method, named as Projected-Gradient Unlearning (PGU)
We provide empirically evidence to demonstrate that our unlearning method can produce models that behave similar to models retrained from scratch across various metrics even when the training dataset is no longer accessible.
arXiv Detail & Related papers (2023-12-07T07:17:24Z) - Zero-shot Retrieval: Augmenting Pre-trained Models with Search Engines [83.65380507372483]
Large pre-trained models can dramatically reduce the amount of task-specific data required to solve a problem, but they often fail to capture domain-specific nuances out of the box.
This paper shows how to leverage recent advances in NLP and multi-modal learning to augment a pre-trained model with search engine retrieval.
arXiv Detail & Related papers (2023-11-29T05:33:28Z) - Fast Machine Unlearning Without Retraining Through Selective Synaptic
Dampening [51.34904967046097]
Selective Synaptic Dampening (SSD) is a fast, performant, and does not require long-term storage of the training data.
We present a novel two-step, post hoc, retrain-free approach to machine unlearning which is fast, performant, and does not require long-term storage of the training data.
arXiv Detail & Related papers (2023-08-15T11:30:45Z) - CAFA: Class-Aware Feature Alignment for Test-Time Adaptation [50.26963784271912]
Test-time adaptation (TTA) aims to address this challenge by adapting a model to unlabeled data at test time.
We propose a simple yet effective feature alignment loss, termed as Class-Aware Feature Alignment (CAFA), which simultaneously encourages a model to learn target representations in a class-discriminative manner.
arXiv Detail & Related papers (2022-06-01T03:02:07Z) - Zero-Shot Machine Unlearning [6.884272840652062]
Modern privacy regulations grant citizens the right to be forgotten by products, services and companies.
No data related to the training process or training samples may be accessible for the unlearning purpose.
We propose two novel solutions for zero-shot machine unlearning based on (a) error minimizing-maximizing noise and (b) gated knowledge transfer.
arXiv Detail & Related papers (2022-01-14T19:16:09Z) - Machine Unlearning of Features and Labels [72.81914952849334]
We propose first scenarios for unlearning and labels in machine learning models.
Our approach builds on the concept of influence functions and realizes unlearning through closed-form updates of model parameters.
arXiv Detail & Related papers (2021-08-26T04:42:24Z) - Certifiable Machine Unlearning for Linear Models [1.484852576248587]
Machine unlearning is the task of updating machine learning (ML) models after a subset of the training data they were trained on is deleted.
We present an experimental study of the three state-of-the-art approximate unlearning methods for linear models.
arXiv Detail & Related papers (2021-06-29T05:05:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.