論文の概要: Tackling Hallucination from Conditional Models for Medical Image Reconstruction with DynamicDPS
- arxiv url: http://arxiv.org/abs/2503.01075v1
- Date: Mon, 03 Mar 2025 00:33:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:21:35.676360
- Title: Tackling Hallucination from Conditional Models for Medical Image Reconstruction with DynamicDPS
- Title(参考訳): ダイナミックDPSを用いた医用画像再構成のための条件モデルからの幻覚への対処
- Authors: Seunghoi Kim, Henry F. J. Tregidgo, Matteo Figini, Chen Jin, Sarang Joshi, Daniel C. Alexander,
- Abstract要約: 幻覚は、基礎的な真実には存在しない刺激的な構造である。
条件付き拡散モデルと非条件拡散モデルを統合する拡散ベースのフレームワークであるDynamicDPSを提案する。
本手法は,任意の条件付きモデル出力から幻覚を効果的に低減する。
- 参考スコア(独自算出の注目度): 3.572461722393917
- License:
- Abstract: Hallucinations are spurious structures not present in the ground truth, posing a critical challenge in medical image reconstruction, especially for data-driven conditional models. We hypothesize that combining an unconditional diffusion model with data consistency, trained on a diverse dataset, can reduce these hallucinations. Based on this, we propose DynamicDPS, a diffusion-based framework that integrates conditional and unconditional diffusion models to enhance low-quality medical images while systematically reducing hallucinations. Our approach first generates an initial reconstruction using a conditional model, then refines it with an adaptive diffusion-based inverse problem solver. DynamicDPS skips early stage in the reverse process by selecting an optimal starting time point per sample and applies Wolfe's line search for adaptive step sizes, improving both efficiency and image fidelity. Using diffusion priors and data consistency, our method effectively reduces hallucinations from any conditional model output. We validate its effectiveness in Image Quality Transfer for low-field MRI enhancement. Extensive evaluations on synthetic and real MR scans, including a downstream task for tissue volume estimation, show that DynamicDPS reduces hallucinations, improving relative volume estimation by over 15% for critical tissues while using only 5% of the sampling steps required by baseline diffusion models. As a model-agnostic and fine-tuning-free approach, DynamicDPS offers a robust solution for hallucination reduction in medical imaging. The code will be made publicly available upon publication.
- Abstract(参考訳): 幻覚は、特にデータ駆動型条件付きモデルにおいて、医療画像再構成において重要な課題となる。
多様なデータセットで訓練された無条件拡散モデルとデータ一貫性を組み合わせることで、これらの幻覚を低減できるという仮説を立てる。
そこで本研究では,低品質な医療画像を改善するために,条件付き拡散モデルと無条件拡散モデルを統合し,幻覚を系統的に低減する拡散型フレームワークであるDynamicDPSを提案する。
提案手法は,まず条件付きモデルを用いて初期再構成を行い,適応拡散に基づく逆問題解法を用いて改良する。
DynamicDPSは、サンプルあたりの最適な開始点を選択し、Wolfeのラインサーチを適応的なステップサイズに適用することで、リバースプロセスの初期段階をスキップし、効率と画像の忠実性の両方を改善した。
拡散先行とデータの整合性を利用して,任意の条件付きモデル出力からの幻覚を効果的に低減する。
低磁場MRIにおける画質変換の有効性を検証する。
組織体積推定のための下流タスクを含む人工的および実際のMRスキャンの広範囲な評価は、DynamicDPSが幻覚を減らし、臨界組織に対する相対体積推定を15%以上改善し、ベースライン拡散モデルで必要とされるサンプリングステップの5%しか使用していないことを示している。
モデルに依存しない、微調整のないアプローチとして、DynamicDPSは医療画像における幻覚の低減のための堅牢なソリューションを提供する。
コードは公開時に公開される。
関連論文リスト
- Latent Drifting in Diffusion Models for Counterfactual Medical Image Synthesis [55.959002385347645]
大規模なデータセットのトレーニングによるスケーリングは、画像生成の品質と忠実度を高め、拡散モデルによる操作を可能にすることが示されている。
遅延ドリフトにより、医療画像に対して拡散モデルを条件付けし、反ファクト画像生成の複雑なタスクに適合させることができる。
本研究は,異なる微調整方式と組み合わせた場合,様々なシナリオにおいて顕著な性能向上を示すものである。
論文 参考訳(メタデータ) (2024-12-30T01:59:34Z) - Progressive Compression with Universally Quantized Diffusion Models [35.199627388957566]
プログレッシブコーディングのための拡散モデルの可能性を探り、インクリメンタルに伝送および復号化が可能なビット列を導出する。
ガウス拡散モデルや条件付き拡散モデルに基づく先行研究とは異なり、前処理における一様雑音を伴う新しい拡散モデルを提案する。
画像圧縮において有望な第一結果が得られ、単一のモデルで幅広いビットレートで競合速度歪みとレートリアリズムが達成される。
論文 参考訳(メタデータ) (2024-12-14T19:06:01Z) - Tuning Timestep-Distilled Diffusion Model Using Pairwise Sample Optimization [97.35427957922714]
任意の時間ステップ蒸留拡散モデルを直接微調整できるPSOアルゴリズムを提案する。
PSOは、現在の時間ステップ蒸留モデルからサンプリングされた追加の参照画像を導入し、トレーニング画像と参照画像との相対的な近縁率を増大させる。
PSOは、オフラインとオンラインのペアワイズ画像データの両方を用いて、蒸留モデルを直接人間の好ましくない世代に適応させることができることを示す。
論文 参考訳(メタデータ) (2024-10-04T07:05:16Z) - Sequential Posterior Sampling with Diffusion Models [15.028061496012924]
条件付き画像合成における逐次拡散後サンプリングの効率を向上させるため,遷移力学をモデル化する新しい手法を提案する。
本研究では,高フレームレート心エコー画像の現実的データセットに対するアプローチの有効性を実証する。
提案手法は,画像の拡散モデルとリアルタイム推論を必要とする他の領域における拡散モデルのリアルタイム適用の可能性を開く。
論文 参考訳(メタデータ) (2024-09-09T07:55:59Z) - JoReS-Diff: Joint Retinex and Semantic Priors in Diffusion Model for Low-light Image Enhancement [69.6035373784027]
低照度画像強調(LLIE)は条件付き拡散モデルを用いて有望な性能を実現している。
従来手法は、タスク固有の条件戦略の十分な定式化の重要性を無視するものであった。
本稿では,Retinex および semantic-based pre-processing condition を付加した新しいアプローチである JoReS-Diff を提案する。
論文 参考訳(メタデータ) (2023-12-20T08:05:57Z) - Steerable Conditional Diffusion for Out-of-Distribution Adaptation in Medical Image Reconstruction [75.91471250967703]
我々は、ステアブル条件拡散と呼ばれる新しいサンプリングフレームワークを導入する。
このフレームワークは、利用可能な測定によって提供される情報のみに基づいて、画像再構成と並行して拡散モデルを適用する。
様々な画像モダリティにまたがるアウト・オブ・ディストリビューション性能の大幅な向上を実現した。
論文 参考訳(メタデータ) (2023-08-28T08:47:06Z) - ExposureDiffusion: Learning to Expose for Low-light Image Enhancement [87.08496758469835]
この研究は、拡散モデルと物理ベースの露光モデルとをシームレスに統合することで、この問題に対処する。
提案手法は,バニラ拡散モデルと比較して性能が大幅に向上し,推論時間を短縮する。
提案するフレームワークは、実際のペア付きデータセット、SOTAノイズモデル、および異なるバックボーンネットワークの両方で動作する。
論文 参考訳(メタデータ) (2023-07-15T04:48:35Z) - Hierarchical Integration Diffusion Model for Realistic Image Deblurring [71.76410266003917]
拡散モデル (DM) は画像劣化に導入され, 有望な性能を示した。
本稿では,階層型統合拡散モデル(HI-Diff)を提案する。
人工的および実世界のぼかしデータセットの実験は、HI-Diffが最先端の手法より優れていることを示した。
論文 参考訳(メタデータ) (2023-05-22T12:18:20Z) - Adaptive Diffusion Priors for Accelerated MRI Reconstruction [0.9895793818721335]
ディープMRI再構成は、完全にサンプリングされたデータと整合したイメージを復元するために、アンサンプされた取得をデエイリアス化する条件付きモデルで一般的に行われる。
非条件モデルは、画像演算子に関連する領域シフトに対する信頼性を向上させるために、演算子から切り離された生成画像の事前を学習する。
本稿では,MRI 再構成に先立つ適応拡散 AdaDiff を提案する。
論文 参考訳(メタデータ) (2022-07-12T22:45:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。