論文の概要: ViKANformer: Embedding Kolmogorov Arnold Networks in Vision Transformers for Pattern-Based Learning
- arxiv url: http://arxiv.org/abs/2503.01124v1
- Date: Mon, 03 Mar 2025 03:10:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:18:39.662935
- Title: ViKANformer: Embedding Kolmogorov Arnold Networks in Vision Transformers for Pattern-Based Learning
- Title(参考訳): ViKANformer: パターンベース学習のための視覚変換器にKolmogorov Arnold Networksを組み込む
- Authors: Shreyas S, Akshath M,
- Abstract要約: 視覚変換器(ViT)はパッチ埋め込みに自己注意を適用して画像分類を行う。
本稿では,サブレイヤをKAN拡張に置き換えるViKANformerを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Vision Transformers (ViTs) have significantly advanced image classification by applying self-attention on patch embeddings. However, the standard MLP blocks in each Transformer layer may not capture complex nonlinear dependencies optimally. In this paper, we propose ViKANformer, a Vision Transformer where we replace the MLP sub-layers with Kolmogorov-Arnold Network (KAN) expansions, including Vanilla KAN, Efficient-KAN, Fast-KAN, SineKAN, and FourierKAN, while also examining a Flash Attention variant. By leveraging the Kolmogorov-Arnold theorem, which guarantees that multivariate continuous functions can be expressed via sums of univariate continuous functions, we aim to boost representational power. Experimental results on MNIST demonstrate that SineKAN, Fast-KAN, and a well-tuned Vanilla KAN can achieve over 97% accuracy, albeit with increased training overhead. This trade-off highlights that KAN expansions may be beneficial if computational cost is acceptable. We detail the expansions, present training/test accuracy and F1/ROC metrics, and provide pseudocode and hyperparameters for reproducibility. Finally, we compare ViKANformer to a simple MLP and a small CNN baseline on MNIST, illustrating the efficiency of Transformer-based methods even on a small-scale dataset.
- Abstract(参考訳): 視覚変換器(ViT)はパッチ埋め込みに自己注意を適用して画像分類を行う。
しかし、トランスフォーマー層における標準のMLPブロックは、複雑な非線形依存を最適に捉えない可能性がある。
本稿では,Vanilla Kan, Efficient-KAN, Fast-KAN, SineKAN, FourierKANなどのMLPサブレイヤをKAN拡張に置き換えたViKANformerを提案する。
コルモゴロフ・アルノルドの定理を利用して、多変量連続函数が単変量連続函数の和によって表現できることを保証することで、表現力を高めることを目指している。
MNISTの実験結果によると、SineKAN、Fast-KAN、そしてよく訓練されたVanilla Kanは97%以上の精度を達成できる。
このトレードオフは、計算コストが許容される場合、kan拡張が有益である可能性があることを強調している。
拡張、トレーニング/テストの精度、F1/ROCメトリクス、再現性のための擬似コードとハイパーパラメータについて詳述する。
最後に、VKANformer を MNIST 上の単純な MLP と小さな CNN ベースラインと比較し、小規模なデータセットでも Transformer ベースの手法の効率性を示す。
関連論文リスト
- Kolmogorov-Arnold Transformer [72.88137795439407]
Kolmogorov-Arnold Transformer(KAT)は,階層をKAN(Kolmogorov-Arnold Network)層に置き換える新しいアーキテクチャである。
C1)基本関数,(C2)非効率,(C3)重みの3つの主要な課題を特定する。
これらの設計により、KATは従来のトランスフォーマーよりも優れている。
論文 参考訳(メタデータ) (2024-09-16T17:54:51Z) - CTRL-F: Pairing Convolution with Transformer for Image Classification via Multi-Level Feature Cross-Attention and Representation Learning Fusion [0.0]
コンボリューションとトランスフォーマーを組み合わせた,軽量なハイブリッドネットワークを提案する。
畳み込み経路から取得した局所応答とMFCAモジュールから取得したグローバル応答とを融合する。
実験により、我々の変種は、大規模データや低データレギュレーションでスクラッチからトレーニングしたとしても、最先端のパフォーマンスを達成することが示された。
論文 参考訳(メタデータ) (2024-07-09T08:47:13Z) - SCHEME: Scalable Channel Mixer for Vision Transformers [52.605868919281086]
ビジョントランスフォーマーは多くの視覚タスクにおいて印象的なパフォーマンスを達成した。
チャネルミキサーや機能ミキシングブロック(FFNか)の研究は、はるかに少ない。
密度の高い接続は、より大きな膨張比をサポートする対角線ブロック構造に置き換えることができることを示す。
論文 参考訳(メタデータ) (2023-12-01T08:22:34Z) - Cross-receptive Focused Inference Network for Lightweight Image
Super-Resolution [64.25751738088015]
トランスフォーマーに基づく手法は、単一画像超解像(SISR)タスクにおいて顕著な性能を示した。
動的に特徴を抽出するために文脈情報を組み込む必要がある変換器は無視される。
我々は,CNNとTransformerを混合したCTブロックのカスケードで構成される,軽量なクロスレセプティブ・フォーカスド・推論・ネットワーク(CFIN)を提案する。
論文 参考訳(メタデータ) (2022-07-06T16:32:29Z) - Your Transformer May Not be as Powerful as You Expect [88.11364619182773]
連続列列列関数を近似できるかどうかに関して, RPE ベースの変換器のパワーを数学的に解析する。
RPEをベースとしたトランスフォーマーでは,ニューラルネットワークの深さや幅がどんなに深くても近似できない連続列列列列関数が存在することを示す。
我々は,その条件を満たす,Universal RPE-based (URPE) Attentionと呼ばれる新しいアテンションモジュールを開発する。
論文 参考訳(メタデータ) (2022-05-26T14:51:30Z) - Adaptive Split-Fusion Transformer [90.04885335911729]
本稿では,適応重みによる畳み込みと注目の分岐を異なる方法で扱うための適応分割変換器(ASF-former)を提案する。
ImageNet-1Kのような標準ベンチマークの実験では、我々のASFフォーマーはCNN、トランスフォーマー、ハイブリッドパイロットを精度で上回っている。
論文 参考訳(メタデータ) (2022-04-26T10:00:28Z) - Vision Transformer with Progressive Sampling [73.60630716500154]
本稿では,識別領域を特定するための反復的・漸進的なサンプリング手法を提案する。
ImageNetでスクラッチからトレーニングされた場合、PS-ViTはトップ1の精度でバニラViTよりも3.8%高いパフォーマンスを示す。
論文 参考訳(メタデータ) (2021-08-03T18:04:31Z) - Dynamic Clone Transformer for Efficient Convolutional Neural Netwoks [0.0]
本稿では,多経路完全連結パターン(MPFC)という概念を導入し,位相パターンの相互依存性,精度,効率性を再考する。
MPFCにインスパイアされた動的クローントランス (DCT) と呼ばれるデュアルブランチモジュールを提案し、入力から複数の複製を生成する。
論文 参考訳(メタデータ) (2021-06-12T13:42:28Z) - Incorporating Convolution Designs into Visual Transformers [24.562955955312187]
我々は、低レベル特徴抽出におけるCNNの利点、局所性の向上、長距離依存の確立におけるトランスフォーマーの利点を組み合わせた新しいtextbfConvolution-enhanced image Transformer (CeiT) を提案する。
ImageNetと7つの下流タスクの実験結果は、大量のトレーニングデータや追加のCNN教師を必要とすることなく、従来のトランスフォーマーや最先端CNNと比較してCeiTの有効性と一般化能力を示している。
論文 参考訳(メタデータ) (2021-03-22T13:16:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。