DPR: Diffusion Preference-based Reward for Offline Reinforcement Learning
- URL: http://arxiv.org/abs/2503.01143v1
- Date: Mon, 03 Mar 2025 03:49:38 GMT
- Title: DPR: Diffusion Preference-based Reward for Offline Reinforcement Learning
- Authors: Teng Pang, Bingzheng Wang, Guoqiang Wu, Yilong Yin,
- Abstract summary: We propose a novel preference-based reward acquisition method: Diffusion Preference-based Reward (DPR)<n>DPR uses diffusion models to directly model preference distributions for state-action pairs, allowing rewards to be discriminatively obtained from these distributions.<n>We apply the above methods to existing offline reinforcement learning algorithms and a series of experiment results demonstrate that the diffusion-based reward acquisition approach outperforms previous-based and Transformer-based methods.
- Score: 30.654668373387214
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Offline preference-based reinforcement learning (PbRL) mitigates the need for reward definition, aligning with human preferences via preference-driven reward feedback without interacting with the environment. However, the effectiveness of preference-driven reward functions depends on the modeling ability of the learning model, which current MLP-based and Transformer-based methods may fail to adequately provide. To alleviate the failure of the reward function caused by insufficient modeling, we propose a novel preference-based reward acquisition method: Diffusion Preference-based Reward (DPR). Unlike previous methods using Bradley-Terry models for trajectory preferences, we use diffusion models to directly model preference distributions for state-action pairs, allowing rewards to be discriminatively obtained from these distributions. In addition, considering the particularity of preference data that only know the internal relationships of paired trajectories, we further propose Conditional Diffusion Preference-based Reward (C-DPR), which leverages relative preference information to enhance the construction of the diffusion model. We apply the above methods to existing offline reinforcement learning algorithms and a series of experiment results demonstrate that the diffusion-based reward acquisition approach outperforms previous MLP-based and Transformer-based methods.
Related papers
- Latent Embedding Adaptation for Human Preference Alignment in Diffusion Planners [16.863492060519157]
This work addresses the challenge of personalizing trajectories generated in automated decision-making systems.
We propose a resource-efficient approach that enables rapid adaptation to individual users' preferences.
arXiv Detail & Related papers (2025-03-24T05:11:58Z) - Calibrated Multi-Preference Optimization for Aligning Diffusion Models [92.90660301195396]
Calibrated Preference Optimization (CaPO) is a novel method to align text-to-image (T2I) diffusion models.
CaPO incorporates the general preference from multiple reward models without human annotated data.
Experimental results show that CaPO consistently outperforms prior methods.
arXiv Detail & Related papers (2025-02-04T18:59:23Z) - Refining Alignment Framework for Diffusion Models with Intermediate-Step Preference Ranking [50.325021634589596]
We propose a Tailored Optimization Preference (TailorPO) framework for aligning diffusion models with human preference.<n>Our approach directly ranks intermediate noisy samples based on their step-wise reward, and effectively resolves the gradient direction issues.<n> Experimental results demonstrate that our method significantly improves the model's ability to generate aesthetically pleasing and human-preferred images.
arXiv Detail & Related papers (2025-02-01T16:08:43Z) - Training-free Diffusion Model Alignment with Sampling Demons [15.400553977713914]
We propose an optimization approach, dubbed Demon, to guide the denoising process at inference time without backpropagation through reward functions or model retraining.<n>Our approach works by controlling noise distribution in denoising steps to concentrate density on regions corresponding to high rewards through optimization.<n>Our experiments show that the proposed approach significantly improves the average aesthetics scores text-to-image generation.
arXiv Detail & Related papers (2024-10-08T07:33:49Z) - Preference Alignment with Flow Matching [23.042382086241364]
Preference Flow Matching (PFM) is a new framework for preference-based reinforcement learning (PbRL)
It streamlines the integration of preferences into an arbitrary class of pre-trained models.
We provide theoretical insights that support our method's alignment with standard PbRL objectives.
arXiv Detail & Related papers (2024-05-30T08:16:22Z) - Bridging Model-Based Optimization and Generative Modeling via Conservative Fine-Tuning of Diffusion Models [54.132297393662654]
We introduce a hybrid method that fine-tunes cutting-edge diffusion models by optimizing reward models through RL.
We demonstrate the capability of our approach to outperform the best designs in offline data, leveraging the extrapolation capabilities of reward models.
arXiv Detail & Related papers (2024-05-30T03:57:29Z) - Robust Preference Optimization through Reward Model Distillation [68.65844394615702]
Direct Preference Optimization (DPO) is a popular offline alignment method that trains a policy directly on preference data.<n>We analyze this phenomenon and use distillation to get a better proxy for the true preference distribution over generation pairs.<n>Our results show that distilling from such a family of reward models leads to improved robustness to distribution shift in preference annotations.
arXiv Detail & Related papers (2024-05-29T17:39:48Z) - Provably Mitigating Overoptimization in RLHF: Your SFT Loss is Implicitly an Adversarial Regularizer [52.09480867526656]
We identify the source of misalignment as a form of distributional shift and uncertainty in learning human preferences.
To mitigate overoptimization, we first propose a theoretical algorithm that chooses the best policy for an adversarially chosen reward model.
Using the equivalence between reward models and the corresponding optimal policy, the algorithm features a simple objective that combines a preference optimization loss and a supervised learning loss.
arXiv Detail & Related papers (2024-05-26T05:38:50Z) - Secrets of RLHF in Large Language Models Part II: Reward Modeling [134.97964938009588]
We introduce a series of novel methods to mitigate the influence of incorrect and ambiguous preferences in the dataset.
We also introduce contrastive learning to enhance the ability of reward models to distinguish between chosen and rejected responses.
arXiv Detail & Related papers (2024-01-11T17:56:59Z) - Learning a Diffusion Model Policy from Rewards via Q-Score Matching [93.0191910132874]
We present a theoretical framework linking the structure of diffusion model policies to a learned Q-function.<n>We propose a new policy update method from this theory, which we denote Q-score matching.
arXiv Detail & Related papers (2023-12-18T23:31:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.