Differentiable Information Enhanced Model-Based Reinforcement Learning
- URL: http://arxiv.org/abs/2503.01178v1
- Date: Mon, 03 Mar 2025 04:51:40 GMT
- Title: Differentiable Information Enhanced Model-Based Reinforcement Learning
- Authors: Xiaoyuan Zhang, Xinyan Cai, Bo Liu, Weidong Huang, Song-Chun Zhu, Siyuan Qi, Yaodong Yang,
- Abstract summary: Differentiable environments have heralded new possibilities for learning control policies by offering rich differentiable information.<n>Model-based reinforcement learning (MBRL) methods exhibit the potential to effectively harness the power of differentiable information for recovering the underlying physical dynamics.<n>However, this presents two primary challenges: effectively utilizing differentiable information to 1) construct models with more accurate dynamic prediction and 2) enhance the stability of policy training.
- Score: 48.820039382764
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Differentiable environments have heralded new possibilities for learning control policies by offering rich differentiable information that facilitates gradient-based methods. In comparison to prevailing model-free reinforcement learning approaches, model-based reinforcement learning (MBRL) methods exhibit the potential to effectively harness the power of differentiable information for recovering the underlying physical dynamics. However, this presents two primary challenges: effectively utilizing differentiable information to 1) construct models with more accurate dynamic prediction and 2) enhance the stability of policy training. In this paper, we propose a Differentiable Information Enhanced MBRL method, MB-MIX, to address both challenges. Firstly, we adopt a Sobolev model training approach that penalizes incorrect model gradient outputs, enhancing prediction accuracy and yielding more precise models that faithfully capture system dynamics. Secondly, we introduce mixing lengths of truncated learning windows to reduce the variance in policy gradient estimation, resulting in improved stability during policy learning. To validate the effectiveness of our approach in differentiable environments, we provide theoretical analysis and empirical results. Notably, our approach outperforms previous model-based and model-free methods, in multiple challenging tasks involving controllable rigid robots such as humanoid robots' motion control and deformable object manipulation.
Related papers
- Reinforcement Learning for Machine Learning Model Deployment: Evaluating Multi-Armed Bandits in ML Ops Environments [0.0]
We investigate whether reinforcement learning (RL)-based model management can manage deployment decisions more effectively.
Our approach enables more adaptive production environments by continuously evaluating deployed models and rolling back underperforming ones in real-time.
Our findings suggest that RL-based model management can improve automation, reduce reliance on manual interventions, and mitigate risks associated with post-deployment model failures.
arXiv Detail & Related papers (2025-03-28T16:42:21Z) - Learning Low-Dimensional Strain Models of Soft Robots by Looking at the Evolution of Their Shape with Application to Model-Based Control [2.058941610795796]
This paper introduces a streamlined method for learning low-dimensional, physics-based models.<n>We validate our approach through simulations with various planar soft manipulators.<n>Thanks to the capability of the method of generating physically compatible models, the learned models can be straightforwardly combined with model-based control policies.
arXiv Detail & Related papers (2024-10-31T18:37:22Z) - Deep autoregressive density nets vs neural ensembles for model-based
offline reinforcement learning [2.9158689853305693]
We consider a model-based reinforcement learning algorithm that infers the system dynamics from the available data and performs policy optimization on imaginary model rollouts.
This approach is vulnerable to exploiting model errors which can lead to catastrophic failures on the real system.
We show that better performance can be obtained with a single well-calibrated autoregressive model on the D4RL benchmark.
arXiv Detail & Related papers (2024-02-05T10:18:15Z) - Exploring Model Transferability through the Lens of Potential Energy [78.60851825944212]
Transfer learning has become crucial in computer vision tasks due to the vast availability of pre-trained deep learning models.
Existing methods for measuring the transferability of pre-trained models rely on statistical correlations between encoded static features and task labels.
We present an insightful physics-inspired approach named PED to address these challenges.
arXiv Detail & Related papers (2023-08-29T07:15:57Z) - Model-Based Reinforcement Learning with Multi-Task Offline Pretraining [59.82457030180094]
We present a model-based RL method that learns to transfer potentially useful dynamics and action demonstrations from offline data to a novel task.
The main idea is to use the world models not only as simulators for behavior learning but also as tools to measure the task relevance.
We demonstrate the advantages of our approach compared with the state-of-the-art methods in Meta-World and DeepMind Control Suite.
arXiv Detail & Related papers (2023-06-06T02:24:41Z) - Decision-Focused Model-based Reinforcement Learning for Reward Transfer [27.899494428456048]
We propose a novel robust decision-focused (RDF) algorithm that learns a transition model that achieves high returns while being robust to changes in the reward function.
We provide theoretical and empirical evidence, on a variety of simulators and real patient data, that RDF can learn simple yet effective models that can be used to plan personalized policies.
arXiv Detail & Related papers (2023-04-06T20:47:09Z) - Active Learning of Discrete-Time Dynamics for Uncertainty-Aware Model Predictive Control [46.81433026280051]
We present a self-supervised learning approach that actively models the dynamics of nonlinear robotic systems.
Our approach showcases high resilience and generalization capabilities by consistently adapting to unseen flight conditions.
arXiv Detail & Related papers (2022-10-23T00:45:05Z) - DST: Dynamic Substitute Training for Data-free Black-box Attack [79.61601742693713]
We propose a novel dynamic substitute training attack method to encourage substitute model to learn better and faster from the target model.
We introduce a task-driven graph-based structure information learning constrain to improve the quality of generated training data.
arXiv Detail & Related papers (2022-04-03T02:29:11Z) - Evaluating model-based planning and planner amortization for continuous
control [79.49319308600228]
We take a hybrid approach, combining model predictive control (MPC) with a learned model and model-free policy learning.
We find that well-tuned model-free agents are strong baselines even for high DoF control problems.
We show that it is possible to distil a model-based planner into a policy that amortizes the planning without any loss of performance.
arXiv Detail & Related papers (2021-10-07T12:00:40Z) - Model-Augmented Actor-Critic: Backpropagating through Paths [81.86992776864729]
Current model-based reinforcement learning approaches use the model simply as a learned black-box simulator.
We show how to make more effective use of the model by exploiting its differentiability.
arXiv Detail & Related papers (2020-05-16T19:18:10Z) - Improving Robot Dual-System Motor Learning with Intrinsically Motivated
Meta-Control and Latent-Space Experience Imagination [17.356402088852423]
We present a novel dual-system motor learning approach where a meta-controller arbitrates online between model-based and model-free decisions.
We evaluate our approach against baseline and state-of-the-art methods on learning vision-based robotic grasping in simulation and real world.
arXiv Detail & Related papers (2020-04-19T12:14:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.