Language-Assisted Feature Transformation for Anomaly Detection
- URL: http://arxiv.org/abs/2503.01184v1
- Date: Mon, 03 Mar 2025 05:15:49 GMT
- Title: Language-Assisted Feature Transformation for Anomaly Detection
- Authors: EungGu Yun, Heonjin Ha, Yeongwoo Nam, Bryan Dongik Lee,
- Abstract summary: Language-Assisted Feature Transformation (LAFT) incorporates user knowledge and preferences into anomaly detection using natural language.<n>Experiments on both toy and real-world datasets validate the effectiveness of our method.
- Score: 3.611617407322135
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper introduces LAFT, a novel feature transformation method designed to incorporate user knowledge and preferences into anomaly detection using natural language. Accurately modeling the boundary of normality is crucial for distinguishing abnormal data, but this is often challenging due to limited data or the presence of nuisance attributes. While unsupervised methods that rely solely on data without user guidance are common, they may fail to detect anomalies of specific interest. To address this limitation, we propose Language-Assisted Feature Transformation (LAFT), which leverages the shared image-text embedding space of vision-language models to transform visual features according to user-defined requirements. Combined with anomaly detection methods, LAFT effectively aligns visual features with user preferences, allowing anomalies of interest to be detected. Extensive experiments on both toy and real-world datasets validate the effectiveness of our method.
Related papers
- Crane: Context-Guided Prompt Learning and Attention Refinement for Zero-Shot Anomaly Detections [50.343419243749054]
Anomaly Detection (AD) involves identifying deviations from normal data distributions.
We propose a novel approach that conditions the prompts of the text encoder based on image context extracted from the vision encoder.
Our method achieves state-of-the-art performance, improving performance by 2% to 29% across different metrics on 14 datasets.
arXiv Detail & Related papers (2025-04-15T10:42:25Z) - Towards Zero-shot 3D Anomaly Localization [58.62650061201283]
3DzAL is a novel patch-level contrastive learning framework for 3D anomaly detection and localization.
We show that 3DzAL outperforms the state-of-the-art anomaly detection and localization performance.
arXiv Detail & Related papers (2024-12-05T16:25:27Z) - Fine-grained Abnormality Prompt Learning for Zero-shot Anomaly Detection [88.34095233600719]
FAPrompt is a novel framework designed to learn Fine-grained Abnormality Prompts for more accurate ZSAD.
It substantially outperforms state-of-the-art methods by at least 3%-5% AUC/AP in both image- and pixel-level ZSAD tasks.
arXiv Detail & Related papers (2024-10-14T08:41:31Z) - Vision-Language Models Assisted Unsupervised Video Anomaly Detection [3.1095294567873606]
Anomaly samples present significant challenges for unsupervised learning methods.
Our method employs a cross-modal pre-trained model that leverages the inferential capabilities of large language models.
By mapping high-dimensional visual features to low-dimensional semantic ones, our method significantly enhance the interpretability of unsupervised anomaly detection.
arXiv Detail & Related papers (2024-09-21T11:48:54Z) - MeLIAD: Interpretable Few-Shot Anomaly Detection with Metric Learning and Entropy-based Scoring [2.394081903745099]
We propose MeLIAD, a novel methodology for interpretable anomaly detection.
MeLIAD is based on metric learning and achieves interpretability by design without relying on any prior distribution assumptions of true anomalies.
Experiments on five public benchmark datasets, including quantitative and qualitative evaluation of interpretability, demonstrate that MeLIAD achieves improved anomaly detection and localization performance.
arXiv Detail & Related papers (2024-09-20T16:01:43Z) - Trajectory Anomaly Detection with Language Models [21.401931052512595]
This paper presents a novel approach for trajectory anomaly detection using an autoregressive causal-attention model, termed LM-TAD.
By treating trajectories as sequences of tokens, our model learns the probability distributions over trajectories, enabling the identification of anomalous locations with high precision.
Our experiments demonstrate the effectiveness of LM-TAD on both synthetic and real-world datasets.
arXiv Detail & Related papers (2024-09-18T17:33:31Z) - Human-Free Automated Prompting for Vision-Language Anomaly Detection: Prompt Optimization with Meta-guiding Prompt Scheme [19.732769780675977]
Pre-trained vision-language models (VLMs) are highly adaptable to various downstream tasks through few-shot learning.
Traditional methods depend on human-crafted prompts that require prior knowledge of specific anomaly types.
Our goal is to develop a human-free prompt-based anomaly detection framework that optimally learns prompts through data-driven methods.
arXiv Detail & Related papers (2024-06-26T09:29:05Z) - Anomaly Detection of Tabular Data Using LLMs [54.470648484612866]
We show that pre-trained large language models (LLMs) are zero-shot batch-level anomaly detectors.
We propose an end-to-end fine-tuning strategy to bring out the potential of LLMs in detecting real anomalies.
arXiv Detail & Related papers (2024-06-24T04:17:03Z) - Self-supervised Feature Adaptation for 3D Industrial Anomaly Detection [59.41026558455904]
We focus on multi-modal anomaly detection. Specifically, we investigate early multi-modal approaches that attempted to utilize models pre-trained on large-scale visual datasets.
We propose a Local-to-global Self-supervised Feature Adaptation (LSFA) method to finetune the adaptors and learn task-oriented representation toward anomaly detection.
arXiv Detail & Related papers (2024-01-06T07:30:41Z) - Framing Algorithmic Recourse for Anomaly Detection [18.347886926848563]
We present an approach -- Context preserving Algorithmic Recourse for Anomalies in Tabular data (CARAT)
CARAT uses a transformer based encoder-decoder model to explain an anomaly by finding features with low likelihood.
Semantically coherent counterfactuals are generated by modifying the highlighted features, using the overall context of features in the anomalous instance(s)
arXiv Detail & Related papers (2022-06-29T03:30:51Z) - Self-Supervised Training with Autoencoders for Visual Anomaly Detection [61.62861063776813]
We focus on a specific use case in anomaly detection where the distribution of normal samples is supported by a lower-dimensional manifold.
We adapt a self-supervised learning regime that exploits discriminative information during training but focuses on the submanifold of normal examples.
We achieve a new state-of-the-art result on the MVTec AD dataset -- a challenging benchmark for visual anomaly detection in the manufacturing domain.
arXiv Detail & Related papers (2022-06-23T14:16:30Z) - SLA$^2$P: Self-supervised Anomaly Detection with Adversarial
Perturbation [77.71161225100927]
Anomaly detection is a fundamental yet challenging problem in machine learning.
We propose a novel and powerful framework, dubbed as SLA$2$P, for unsupervised anomaly detection.
arXiv Detail & Related papers (2021-11-25T03:53:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.