MeLIAD: Interpretable Few-Shot Anomaly Detection with Metric Learning and Entropy-based Scoring
- URL: http://arxiv.org/abs/2409.13602v1
- Date: Fri, 20 Sep 2024 16:01:43 GMT
- Title: MeLIAD: Interpretable Few-Shot Anomaly Detection with Metric Learning and Entropy-based Scoring
- Authors: Eirini Cholopoulou, Dimitris K. Iakovidis,
- Abstract summary: We propose MeLIAD, a novel methodology for interpretable anomaly detection.
MeLIAD is based on metric learning and achieves interpretability by design without relying on any prior distribution assumptions of true anomalies.
Experiments on five public benchmark datasets, including quantitative and qualitative evaluation of interpretability, demonstrate that MeLIAD achieves improved anomaly detection and localization performance.
- Score: 2.394081903745099
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Anomaly detection (AD) plays a pivotal role in multimedia applications for detecting defective products and automating quality inspection. Deep learning (DL) models typically require large-scale annotated data, which are often highly imbalanced since anomalies are usually scarce. The black box nature of these models prohibits them from being trusted by users. To address these challenges, we propose MeLIAD, a novel methodology for interpretable anomaly detection, which unlike the previous methods is based on metric learning and achieves interpretability by design without relying on any prior distribution assumptions of true anomalies. MeLIAD requires only a few samples of anomalies for training, without employing any augmentation techniques, and is inherently interpretable, providing visualizations that offer insights into why an image is identified as anomalous. This is achieved by introducing a novel trainable entropy-based scoring component for the identification and localization of anomalous instances, and a novel loss function that jointly optimizes the anomaly scoring component with a metric learning objective. Experiments on five public benchmark datasets, including quantitative and qualitative evaluation of interpretability, demonstrate that MeLIAD achieves improved anomaly detection and localization performance compared to state-of-the-art methods.
Related papers
- Adaptive Deviation Learning for Visual Anomaly Detection with Data Contamination [20.4008901760593]
We introduce a systematic adaptive method that employs deviation learning to compute anomaly scores end-to-end.
Our proposed method surpasses competing techniques and exhibits both stability and robustness in the presence of data contamination.
arXiv Detail & Related papers (2024-11-14T16:10:15Z) - AnomalyDiffusion: Few-Shot Anomaly Image Generation with Diffusion Model [59.08735812631131]
Anomaly inspection plays an important role in industrial manufacture.
Existing anomaly inspection methods are limited in their performance due to insufficient anomaly data.
We propose AnomalyDiffusion, a novel diffusion-based few-shot anomaly generation model.
arXiv Detail & Related papers (2023-12-10T05:13:40Z) - Video Anomaly Detection via Spatio-Temporal Pseudo-Anomaly Generation : A Unified Approach [49.995833831087175]
This work proposes a novel method for generating generic Video-temporal PAs by inpainting a masked out region of an image.
In addition, we present a simple unified framework to detect real-world anomalies under the OCC setting.
Our method performs on par with other existing state-of-the-art PAs generation and reconstruction based methods under the OCC setting.
arXiv Detail & Related papers (2023-11-27T13:14:06Z) - Don't Miss Out on Novelty: Importance of Novel Features for Deep Anomaly
Detection [64.21963650519312]
Anomaly Detection (AD) is a critical task that involves identifying observations that do not conform to a learned model of normality.
We propose a novel approach to AD using explainability to capture such novel features as unexplained observations in the input space.
Our approach establishes a new state-of-the-art across multiple benchmarks, handling diverse anomaly types.
arXiv Detail & Related papers (2023-10-01T21:24:05Z) - Few-shot Anomaly Detection in Text with Deviation Learning [13.957106119614213]
We introduce FATE, a framework that learns anomaly scores explicitly in an end-to-end method using deviation learning.
Our model is optimized to learn the distinct behavior of anomalies by utilizing a multi-head self-attention layer and multiple instance learning approaches.
arXiv Detail & Related papers (2023-08-22T20:40:21Z) - Self-Supervised Training with Autoencoders for Visual Anomaly Detection [61.62861063776813]
We focus on a specific use case in anomaly detection where the distribution of normal samples is supported by a lower-dimensional manifold.
We adapt a self-supervised learning regime that exploits discriminative information during training but focuses on the submanifold of normal examples.
We achieve a new state-of-the-art result on the MVTec AD dataset -- a challenging benchmark for visual anomaly detection in the manufacturing domain.
arXiv Detail & Related papers (2022-06-23T14:16:30Z) - Object-centric and memory-guided normality reconstruction for video
anomaly detection [56.64792194894702]
This paper addresses anomaly detection problem for videosurveillance.
Due to the inherent rarity and heterogeneity of abnormal events, the problem is viewed as a normality modeling strategy.
Our model learns object-centric normal patterns without seeing anomalous samples during training.
arXiv Detail & Related papers (2022-03-07T19:28:39Z) - Explainable Deep Few-shot Anomaly Detection with Deviation Networks [123.46611927225963]
We introduce a novel weakly-supervised anomaly detection framework to train detection models.
The proposed approach learns discriminative normality by leveraging the labeled anomalies and a prior probability.
Our model is substantially more sample-efficient and robust, and performs significantly better than state-of-the-art competing methods in both closed-set and open-set settings.
arXiv Detail & Related papers (2021-08-01T14:33:17Z) - Out-Of-Bag Anomaly Detection [0.9449650062296822]
Data anomalies are ubiquitous in real world datasets, and can have an adverse impact on machine learning (ML) systems.
We propose a novel model-based anomaly detection method, that we call Out-of-Bag anomaly detection.
We show our method can improve the accuracy and reliability of an ML system as data pre-processing step via a case study on home valuation.
arXiv Detail & Related papers (2020-09-20T06:01:52Z) - Interpreting Rate-Distortion of Variational Autoencoder and Using Model
Uncertainty for Anomaly Detection [5.491655566898372]
We build a scalable machine learning system for unsupervised anomaly detection via representation learning.
We revisit VAE from the perspective of information theory to provide some theoretical foundations on using the reconstruction error.
We show empirically the competitive performance of our approach on benchmark datasets.
arXiv Detail & Related papers (2020-05-05T00:03:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.