Parameter-free Video Segmentation for Vision and Language Understanding
- URL: http://arxiv.org/abs/2503.01201v1
- Date: Mon, 03 Mar 2025 05:54:37 GMT
- Title: Parameter-free Video Segmentation for Vision and Language Understanding
- Authors: Louis Mahon, Mirella Lapata,
- Abstract summary: We propose an algorithm for segmenting videos into contiguous chunks, based on the minimum description length principle.<n>The algorithm is entirely parameter-free, given feature vectors, not requiring a set threshold or the number or size of chunks to be specified.
- Score: 55.20132267309382
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The proliferation of creative video content has driven demand for adapting language models to handle video input and enable multimodal understanding. However, end-to-end models struggle to process long videos due to their size and complexity. An effective alternative is to divide them into smaller chunks to be processed separately, and this motivates a method for choosing where the chunk boundaries should be. In this paper, we propose an algorithm for segmenting videos into contiguous chunks, based on the minimum description length principle, coupled with a dynamic programming search. The algorithm is entirely parameter-free, given feature vectors, not requiring a set threshold or the number or size of chunks to be specified. We show empirically that the breakpoints it produces more accurately approximate scene boundaries in long videos, compared with existing methods for scene detection, even when such methods have access to the true number of scenes. We then showcase this algorithm in two tasks: long video summarization, and retrieval-augmented video question answering. In both cases, scene breaks produced by our algorithm lead to better downstream performance than existing methods for video segmentation.
Related papers
- Whats in a Video: Factorized Autoregressive Decoding for Online Dense Video Captioning [71.94122309290537]
We propose an efficient, online approach to generate dense captions for videos.
Our model uses a novel autoregressive factorized decoding architecture.
Our approach shows excellent performance compared to both offline and online methods, and uses 20% less compute.
arXiv Detail & Related papers (2024-11-22T02:46:44Z) - ViLLa: Video Reasoning Segmentation with Large Language Model [48.75470418596875]
We propose a new video segmentation task - video reasoning segmentation.
The task is designed to output tracklets of segmentation masks given a complex input text query.
We present ViLLa: Video reasoning segmentation with a Large Language Model.
arXiv Detail & Related papers (2024-07-18T17:59:17Z) - PM-VIS+: High-Performance Video Instance Segmentation without Video Annotation [15.9587266448337]
Video instance segmentation requires detecting, segmenting, and tracking objects in videos.
This paper introduces a method that eliminates video annotations by utilizing image datasets.
arXiv Detail & Related papers (2024-06-28T05:22:39Z) - Revisiting Kernel Temporal Segmentation as an Adaptive Tokenizer for
Long-form Video Understanding [57.917616284917756]
Real-world videos are often several minutes long with semantically consistent segments of variable length.
A common approach to process long videos is applying a short-form video model over uniformly sampled clips of fixed temporal length.
This approach neglects the underlying nature of long videos since fixed-length clips are often redundant or uninformative.
arXiv Detail & Related papers (2023-09-20T18:13:32Z) - Tracking Anything with Decoupled Video Segmentation [87.07258378407289]
We develop a decoupled video segmentation approach (DEVA)
It is composed of task-specific image-level segmentation and class/task-agnostic bi-directional temporal propagation.
We show that this decoupled formulation compares favorably to end-to-end approaches in several data-scarce tasks.
arXiv Detail & Related papers (2023-09-07T17:59:41Z) - Video Generation Beyond a Single Clip [76.5306434379088]
Video generation models can only generate video clips that are relatively short compared with the length of real videos.
To generate long videos covering diverse content and multiple events, we propose to use additional guidance to control the video generation process.
The proposed approach is complementary to existing efforts on video generation, which focus on generating realistic video within a fixed time window.
arXiv Detail & Related papers (2023-04-15T06:17:30Z) - Scene Consistency Representation Learning for Video Scene Segmentation [26.790491577584366]
We propose an effective Self-Supervised Learning (SSL) framework to learn better shot representations from long-term videos.
We present an SSL scheme to achieve scene consistency, while exploring considerable data augmentation and shuffling methods to boost the model generalizability.
Our method achieves the state-of-the-art performance on the task of Video Scene.
arXiv Detail & Related papers (2022-05-11T13:31:15Z) - Less is More: ClipBERT for Video-and-Language Learning via Sparse
Sampling [98.41300980759577]
A canonical approach to video-and-language learning dictates a neural model to learn from offline-extracted dense video features.
We propose a generic framework ClipBERT that enables affordable end-to-end learning for video-and-language tasks.
Experiments on text-to-video retrieval and video question answering on six datasets demonstrate that ClipBERT outperforms existing methods.
arXiv Detail & Related papers (2021-02-11T18:50:16Z) - A Hierarchical Multi-Modal Encoder for Moment Localization in Video
Corpus [31.387948069111893]
We show how to identify a short segment in a long video that semantically matches a text query.
To tackle this problem, we propose the HierArchical Multi-Modal EncodeR (HAMMER) that encodes a video at both the coarse-grained clip level and the fine-trimmed frame level.
We conduct extensive experiments to evaluate our model on moment localization in video corpus on ActivityNet Captions and TVR datasets.
arXiv Detail & Related papers (2020-11-18T02:42:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.