OIPR: Evaluation for Time-series Anomaly Detection Inspired by Operator Interest
- URL: http://arxiv.org/abs/2503.01260v1
- Date: Mon, 03 Mar 2025 07:37:24 GMT
- Title: OIPR: Evaluation for Time-series Anomaly Detection Inspired by Operator Interest
- Authors: Yuhan Jing, Jingyu Wang, Lei Zhang, Haifeng Sun, Bo He, Zirui Zhuang, Chengsen Wang, Qi Qi, Jianxin Liao,
- Abstract summary: We propose a novel set of time-series anomaly detection evaluation metrics, called OIPR.<n>OIPR models the process of operators receiving detector alarms and handling faults, utilizing area under the operator interest curve to evaluate the performance of TAD algorithms.<n>It achieves a balance between point and event perspectives, overcoming their primary limitations and offering applicability to broader situations.
- Score: 26.460594836601004
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: With the growing adoption of time-series anomaly detection (TAD) technology, numerous studies have employed deep learning-based detectors for analyzing time-series data in the fields of Internet services, industrial systems, and sensors. The selection and optimization of anomaly detectors strongly rely on the availability of an effective performance evaluation method for TAD. Since anomalies in time-series data often manifest as a sequence of points, conventional metrics that solely consider the detection of individual point are inadequate. Existing evaluation methods for TAD typically employ point-based or event-based metrics to capture the temporal context. However, point-based metrics tend to overestimate detectors that excel only in detecting long anomalies, while event-based metrics are susceptible to being misled by fragmented detection results. To address these limitations, we propose OIPR, a novel set of TAD evaluation metrics. It models the process of operators receiving detector alarms and handling faults, utilizing area under the operator interest curve to evaluate the performance of TAD algorithms. Furthermore, we build a special scenario dataset to compare the characteristics of different evaluation methods. Through experiments conducted on the special scenario dataset and five real-world datasets, we demonstrate the remarkable performance of OIPR in extreme and complex scenarios. It achieves a balance between point and event perspectives, overcoming their primary limitations and offering applicability to broader situations.
Related papers
- A Comprehensive Library for Benchmarking Multi-class Visual Anomaly Detection [52.228708947607636]
This paper introduces a comprehensive visual anomaly detection benchmark, ADer, which is a modular framework for new methods.
The benchmark includes multiple datasets from industrial and medical domains, implementing fifteen state-of-the-art methods and nine comprehensive metrics.
We objectively reveal the strengths and weaknesses of different methods and provide insights into the challenges and future directions of multi-class visual anomaly detection.
arXiv Detail & Related papers (2024-06-05T13:40:07Z) - PATE: Proximity-Aware Time series anomaly Evaluation [3.0377067713090633]
Traditional performance metrics assume iid data and fail to capture the complex temporal dynamics and specific characteristics of time series anomalies.
We introduce Proximity-Aware Time series anomaly Evaluation (PATE), a novel evaluation metric that incorporates the temporal relationship between prediction and anomaly intervals.
Our experiments with synthetic and real-world datasets show the superiority of PATE in providing more sensible and accurate evaluations.
arXiv Detail & Related papers (2024-05-20T15:06:36Z) - Detection Latencies of Anomaly Detectors: An Overlooked Perspective ? [1.8492669447784602]
In this paper, we argue the relevance of measuring the temporal latency of attacks and errors.
We propose an evaluation approach for detectors to ensure a pragmatic trade-off between correct and in-time detection.
arXiv Detail & Related papers (2024-02-14T10:52:39Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
We introduce a novel framework called GST-Pro, which utilizes a graphtemporal process and anomaly scorer to detect anomalies.
Our experimental results show that the GST-Pro method can effectively detect anomalies in time series data and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-01-11T10:10:16Z) - PULL: Reactive Log Anomaly Detection Based On Iterative PU Learning [58.85063149619348]
We propose PULL, an iterative log analysis method for reactive anomaly detection based on estimated failure time windows.
Our evaluation shows that PULL consistently outperforms ten benchmark baselines across three different datasets.
arXiv Detail & Related papers (2023-01-25T16:34:43Z) - Unsupervised Anomaly Detection in Time-series: An Extensive Evaluation and Analysis of State-of-the-art Methods [10.618572317896515]
Unsupervised anomaly detection in time-series has been extensively investigated in the literature.
This paper proposes an in-depth evaluation study of recent unsupervised anomaly detection techniques in time-series.
arXiv Detail & Related papers (2022-12-06T15:05:54Z) - An Outlier Exposure Approach to Improve Visual Anomaly Detection
Performance for Mobile Robots [76.36017224414523]
We consider the problem of building visual anomaly detection systems for mobile robots.
Standard anomaly detection models are trained using large datasets composed only of non-anomalous data.
We tackle the problem of exploiting these data to improve the performance of a Real-NVP anomaly detection model.
arXiv Detail & Related papers (2022-09-20T15:18:13Z) - A Comparative Study on Unsupervised Anomaly Detection for Time Series:
Experiments and Analysis [28.79393419730138]
Time series anomaly detection is often essential to enable reliability and safety.
Many recent studies target anomaly detection for time series data.
We introduce for data, methods, and evaluation strategies.
We systematically evaluate and compare state-of-the-art traditional as well as deep learning techniques.
arXiv Detail & Related papers (2022-09-10T10:44:25Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
We propose a novel anomaly detection model called Discriminatory Auto-Encoder (DAE)
It uses the baseline of a regular LSTM-based auto-encoder but with several decoders, each getting data of a specific flight phase.
Results show that the DAE achieves better results in both accuracy and speed of detection.
arXiv Detail & Related papers (2021-09-08T14:07:55Z) - Doing Great at Estimating CATE? On the Neglected Assumptions in
Benchmark Comparisons of Treatment Effect Estimators [91.3755431537592]
We show that even in arguably the simplest setting, estimation under ignorability assumptions can be misleading.
We consider two popular machine learning benchmark datasets for evaluation of heterogeneous treatment effect estimators.
We highlight that the inherent characteristics of the benchmark datasets favor some algorithms over others.
arXiv Detail & Related papers (2021-07-28T13:21:27Z) - How Far Should We Look Back to Achieve Effective Real-Time Time-Series
Anomaly Detection? [1.0437764544103274]
Anomaly detection is the process of identifying unexpected events or ab-normalities in data.
RePAD (Real-time Proactive Anomaly Detection algorithm) is a generic approach with all above-mentioned features.
It is unclear how different amounts of historical data points affect the performance of RePAD.
arXiv Detail & Related papers (2021-02-12T14:51:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.