論文の概要: Revisiting Locally Differentially Private Protocols: Towards Better Trade-offs in Privacy, Utility, and Attack Resistance
- arxiv url: http://arxiv.org/abs/2503.01482v1
- Date: Mon, 03 Mar 2025 12:41:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:12:49.622409
- Title: Revisiting Locally Differentially Private Protocols: Towards Better Trade-offs in Privacy, Utility, and Attack Resistance
- Title(参考訳): 地域的に異なる私的プロトコルを再考する: プライバシー、ユーティリティ、攻撃抵抗のトレードオフの改善を目指して
- Authors: Héber H. Arcolezi, Sébastien Gambs,
- Abstract要約: ローカル微分プライバシー(LDP)は、特にデータを収集するサーバが信頼できない設定で、強力なプライバシ保護を提供する。
本稿では, LDPプロトコルを改良するための汎用多目的最適化フレームワークを提案する。
具体的には,プライバシの尺度としてアタッカー成功率(ASR)を,ユーティリティの尺度として平均二乗誤差(MSE)を特に最適化する。
- 参考スコア(独自算出の注目度): 4.5282933786221395
- License:
- Abstract: Local Differential Privacy (LDP) offers strong privacy protection, especially in settings in which the server collecting the data is untrusted. However, designing LDP mechanisms that achieve an optimal trade-off between privacy, utility, and robustness to adversarial inference attacks remains challenging. In this work, we introduce a general multi-objective optimization framework for refining LDP protocols, enabling the joint optimization of privacy and utility under various adversarial settings. While our framework is flexible enough to accommodate multiple privacy and security attacks as well as utility metrics, in this paper we specifically optimize for Attacker Success Rate (ASR) under distinguishability attack as a measure of privacy and Mean Squared Error (MSE) as a measure of utility. We systematically revisit these trade-offs by analyzing eight state-of-the-art LDP protocols and proposing refined counterparts that leverage tailored optimization techniques. Experimental results demonstrate that our proposed adaptive mechanisms consistently outperform their non-adaptive counterparts, reducing ASR by up to five orders of magnitude while maintaining competitive utility. Analytical derivations also confirm the effectiveness of our mechanisms, moving them closer to the ASR-MSE Pareto frontier.
- Abstract(参考訳): ローカル微分プライバシー(LDP)は、特にデータを収集するサーバが信頼できない設定で、強力なプライバシ保護を提供する。
しかし、プライバシ、ユーティリティ、ロバスト性の間の最適なトレードオフを実現するためのLDP機構を設計することは依然として困難である。
本研究では, LDPプロトコルを改良するための汎用多目的最適化フレームワークを提案する。
当社のフレームワークは,複数のプライバシとセキュリティ攻撃に対応するのに十分な柔軟性を備えていますが,本論文では,プライバシの尺度としてアタッカー成功率(ASR)を,ユーティリティの尺度としてMean Squared Error(MSE)を,特に区別可能性攻撃下でのアタッカー成功率(ASR)を最適化します。
我々は,8つの最先端のLCPプロトコルを分析し,最適化手法を最適化する改良されたプロトコルを提案することで,これらのトレードオフを体系的に再検討する。
実験の結果,提案した適応機構は非適応機構より一貫して優れており,競争力を維持しつつ,最大5桁のASRを低減できることがわかった。
また,ASR-MSE Paretoフロンティアに近づくことにより,本機構の有効性も確認された。
関連論文リスト
- Meeting Utility Constraints in Differential Privacy: A Privacy-Boosting Approach [7.970280110429423]
本稿では,ほとんどのノイズ付加型DP機構と互換性のあるプライバシブースティングフレームワークを提案する。
私たちのフレームワークは、ユーティリティ要件を満たすために、サポートの望ましいサブセットに出力が落ちる可能性を高める。
提案手法は,実用性制約下での標準DP機構よりも低いプライバシー損失を実現する。
論文 参考訳(メタデータ) (2024-12-13T23:34:30Z) - Privacy-Preserving Dynamic Assortment Selection [4.399892832075127]
本稿では,マルチノミアルロジット(MNL)バンドレートモデルを用いて,プライバシ保護のための動的アソシエーション選択のための新しいフレームワークを提案する。
弊社のアプローチでは、ノイズをユーザユーティリティ推定に統合し、探索とエクスプロイトのバランスを保ちつつ、堅牢なプライバシー保護を確保している。
論文 参考訳(メタデータ) (2024-10-29T19:28:01Z) - Enhancing Feature-Specific Data Protection via Bayesian Coordinate Differential Privacy [55.357715095623554]
ローカル微分プライバシー(LDP)は、ユーザーが外部の関係者を信頼することなく、強力なプライバシー保証を提供する。
本稿では,ベイジアン・フレームワークであるベイジアン・コーディネート・ディファレンシャル・プライバシ(BCDP)を提案する。
論文 参考訳(メタデータ) (2024-10-24T03:39:55Z) - Convergent Differential Privacy Analysis for General Federated Learning: the $f$-DP Perspective [57.35402286842029]
フェデレートラーニング(Federated Learning, FL)は、ローカルプライバシを重視した効率的な協調トレーニングパラダイムである。
ディファレンシャルプライバシ(DP)は、私的保護の信頼性を捕捉し、保証するための古典的なアプローチである。
論文 参考訳(メタデータ) (2024-08-28T08:22:21Z) - Universally Harmonizing Differential Privacy Mechanisms for Federated Learning: Boosting Accuracy and Convergence [22.946928984205588]
ディファレンシャル・プライベート・フェデレーション・ラーニング(DP-FL)は協調モデルトレーニングにおいて有望な手法である。
本稿では,任意のランダム化機構を普遍的に調和させる最初のDP-FLフレームワーク(UDP-FL)を提案する。
その結果,UDP-FLは異なる推論攻撃に対して強い耐性を示すことがわかった。
論文 参考訳(メタデータ) (2024-07-20T00:11:59Z) - Low-Cost Privacy-Aware Decentralized Learning [5.295018540083454]
本稿では,ZIP-DLを提案する。ZIP-DLは,相関雑音を利用して,ローカルな敵に対する強力なプライバシ保護を提供する,プライバシー対応分散学習(DL)アルゴリズムである。
本稿では,収束速度とプライバシ保証の両方を理論的に保証し,ZIP-DLを実用シナリオに適用する。
論文 参考訳(メタデータ) (2024-03-18T13:53:17Z) - TernaryVote: Differentially Private, Communication Efficient, and
Byzantine Resilient Distributed Optimization on Heterogeneous Data [50.797729676285876]
本稿では, 3次圧縮機と多数決機構を組み合わせて, 差分プライバシー, 勾配圧縮, ビザンチンレジリエンスを同時に実現するternaryVoteを提案する。
提案アルゴリズムのF差分プライバシー(DP)とビザンチンレジリエンスのレンズによるプライバシー保証を理論的に定量化する。
論文 参考訳(メタデータ) (2024-02-16T16:41:14Z) - Theoretically Principled Federated Learning for Balancing Privacy and
Utility [61.03993520243198]
モデルパラメータを歪ませることでプライバシを保護する保護機構の一般学習フレームワークを提案する。
フェデレートされた学習における各コミュニケーションラウンドにおいて、各クライアント上の各モデルパラメータに対して、パーソナライズされたユーティリティプライバシトレードオフを実現することができる。
論文 参考訳(メタデータ) (2023-05-24T13:44:02Z) - Decentralized Stochastic Optimization with Inherent Privacy Protection [103.62463469366557]
分散最適化は、現代の協調機械学習、分散推定と制御、大規模センシングの基本的な構成要素である。
データが関与して以降、分散最適化アルゴリズムの実装において、プライバシ保護がますます重要になっている。
論文 参考訳(メタデータ) (2022-05-08T14:38:23Z) - Monotonic Improvement Guarantees under Non-stationarity for
Decentralized PPO [66.5384483339413]
我々は,MARL(Multi-Agent Reinforcement Learning)における分散政策の最適化のための新しい単調改善保証を提案する。
本研究では,訓練中のエージェント数に基づいて,独立した比率を限定することにより,信頼領域の制約を原則的に効果的に実施可能であることを示す。
論文 参考訳(メタデータ) (2022-01-31T20:39:48Z) - Federated Learning with Sparsification-Amplified Privacy and Adaptive
Optimization [27.243322019117144]
フェデレートラーニング(FL)により、分散エージェントは、生データを互いに共有することなく、集中型モデルを共同で学習することができる。
スパーシフィケーションを増幅した新しいFLフレームワークを提案する。
提案手法では,ランダムなスペーシフィケーションと各エージェントの勾配摂動を統合し,プライバシー保証を増幅する。
論文 参考訳(メタデータ) (2020-08-01T20:22:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。